• Title/Summary/Keyword: Surface hardness change

Search Result 264, Processing Time 0.026 seconds

Aging Degradation Assessment of Materials by Ultrasonic Characterization (초음파 특성을 이용한 경년열화 평가)

  • Park, Un-Su;Park, Ik-Keun;Kim, Duck-Hee;Ahn, Hyung-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.149-154
    • /
    • 2002
  • An attempt was made to evaluate the changes of microstructures and mechanical properties with increasing aging time in 2.25Cr-1Mo steel. In this study, it was verified the feasibility of the evaluation for degraded 2.25Cr-1Mo steel by isothermal heat treatment at $630^{\circ}C$ up to 1,000 hours using surface SH wave and investigated the change of attenuation coefficient and propagation time. Attenuation coefficient had a tendency to increase according to degradation and propagation time drastically in the beginning of deterioration. A good correlation between ultrasonic attenuation coefficient and hardness was found, which made sure that attenuation coefficient is an potential parameter for evaluation of aging degradation. In addition, it has verified experimentally the frequency dependence of ultrasonic group velocity and attenuation coefficient using wavelet transform.

Damage Analysis of Train Rail Fishplate (전동차 선로 이음매 판의 파손 해석)

  • Seo-Hyun Yun;Byoung-Chul Choi;Ki-Hang Shin;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.341-347
    • /
    • 2023
  • The subway is one of the most common and important means of transportation in modern society. In order to use the subway safely, tracks are necessary, but trains are prone to derailment and collisions. In order for the train to run safely on the track, the fishplate that connects the line connection is used. The damaged railway was a fishplate for connecting subway lines used for 11 years, and damage analysis and countermeasures were presented. Beach marks were observed on both fracture surfaces, and striations appeared at the range of crack propagation. The damaged part is Cr carbide, which has a higher hardness than the base metal, and is judged to be embrittled and destroyed by fatigue. The SM50C fishplate was subjected to a cyclic stress of about 59% of the upper limit of tensile-compression fatigue limit, but inclusions were the cause of failure. In order to prevent fatigue failure of the SM50C steel fishplate, the occurrence of inclusions should be minimized and processed to have a homogeneous structure when manufacturing the fishplate. In addition, compressive residual stress is given through surface modification such as peening to control crack generation. It is necessary to minimize the change in shape that can become a stress concentration part along with accurate fastening of the bolt, and to design the stress distribution to be as uniform as possible.

Development of a Ginseng Surface Washing System (인삼 표면세척 시스템 개발)

  • Lee, Hyun-Seok;Jeong, Jin-Woong;Kim, Byeong-Sam;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.541-548
    • /
    • 2009
  • We developed a surface washing system for ginseng. The washing system was developed using different treatments and conditions and characterized in terms of product hardness, weight loss, and change in temperature and color. Optimal results were obtained using a surface washing system involving a washing conveyor speed of 1.0 L/min, a water pressure of $35\;kg/cm^2$, a washing nozzle angle of $40^{\circ}$, a washing height of 5 cm, a 1-sec reciprocating washing nozzle cycle, a dehydration wind velocity of 30 m/sec, and an internal drying temperature of $30-33^{\circ}C$. A surface washing system using a washing conveyor speed of0.8 L/min, a water pressure of $40\;kg/cm^2$, a washing nozzle angle of $40^{\circ}$, a washing height of 3 cm, a 1-sec reciprocating washing nozzle cycle, a dehydration wind velocity of 30 m/sec, and an internal drying temperature of $30-33^{\circ}C$ resulted in ginseng that was stained yellow.

Comparative evaluation of roughness of titanium surfaces treated by different hygiene instruments

  • Unursaikhan, Otgonbayar;Lee, Jung-Seok;Cha, Jae-Kook;Park, Jung-Chul;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.3
    • /
    • pp.88-94
    • /
    • 2012
  • Purpose: The use of appropriate instruments to clean surfaces with minimal change, is critical for the successful maintenance of a dental implant. However, there is no consensus about the type and methodology for such instruments. The aim of this study was to characterize changes in the roughness of titanium surfaces treated by various scaling instruments. Methods: Thirty-seven identical disks (5 mm in diameter) were investigated in this study. The specimens were divided into eight groups according to the types of instrumentation and the angle of application. Ultrasonic scaling systems were applied on a titanium disk to simulate standard clinical conditions. The equipment included a piezoelectric ultrasonic scaler with a newly developed metallic tip (NS group), a piezoelectric ultrasonic scaler with a conventional tip (CS group), a piezoelectric root planer ultrasonic scaler with a conventional tip (PR group), and a plastic hand curette (PH group). In addition, the sites treated using piezoelectric ultrasonic scaler systems were divided two sub-groups: 15 and 45 degrees. The treated titanium surfaces were observed by scanning electron microscopy (SEM), and the average surface roughness (Ra) and mean roughness profile depth (Rz) were measured with a profilometer. Results: SEM no significant changes in the titanium surfaces in the NS group, regardless of the angle of application. The PH group also showed no marked changes to the titanium surface, although some smoothening was observed. All CS and PR sites lost their original texture and showed irregular surfaces in SEM analysis. The profilometer analysis demonstrated that the roughness values (Ra and Rz) of the titanium surfaces increased in all, except the PH and NS groups, which showed roughness decreases relative to the untreated control group. The Ra value differed significantly between the NS and PR groups (P<0.05). Conclusions: The results of this study indicated that changes in or damage to titanium surfaces might be more affected by the hardness of the scaler tip than by the application method. Within the limitations of this study, the newly developed metallic scaler tip might be especially suitable for peri-implant surface decontamination, due to its limited effects on the titanium surface.

Study on the hydrophobic modification of zirconia surface for organic-inorganic hybrid coatings (유-무기 하이브리드 코팅액 제조를 위한 지르코니아 표면의 소수화 개질 연구)

  • Lee, Soo;Moon, Sung Jin;Park, Jung Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.260-270
    • /
    • 2017
  • Zirconia has white color and physical, chemical stability, also using in high temperature materials and various industrial structural ceramics such as heat insulating materials and refractories due to their low thermal conductivity, excellent strength, toughness, and corrosion resistance. If hydrophobically modified zirconia is introduced into a hydrophobic acrylate coating solution, the hardness, chemical, electrical, and optical properties will be improved due to the better dispersibility of inorganic particle in organic coating media. Thus, we introduced $-CH_3$ group through silylation reaction using either trimethylchlorosilane(TMCS) or hexamethyldisilazane(HMDZ) on zirconia surface. The $Si-CH_3$ peaks derived from TMCS and HMDZ on hydrophobically modified zirconia surface was confirmed by FT-IR ATR spectroscopy, and introduction of silicon was confirmed by FE-SEM/EDS and ICP-AES. In addition, the sedimentation rate result in acrylate monomer of the modified zirconia showed the improved dispersibility. Comparison of the sizes of a pristine and the modified zirconia particles, which were clearly measured not by the normal microscope but by particle size analysis, provided a pulverizing was occurred by physical force during the silylation process. From the BET analysis data, the specific surface area of zirconia was approximately $18m^2/g$ and did not significantly change during modification process.

Change of Physical Properties on Long-Term Fertilization of Compost and Silicate in Paddy Soils (퇴비 및 규산질비료의 장기연용에 따른 토양 물리적특성 변화)

  • Park, Chang-Young;Choi, Jyung;Park, Ki-Do;Jeon, Weon-Tai;Kwon, Hye-Young;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.175-181
    • /
    • 2000
  • This study was carried out to investigate the change of soil physical properties in long-term fertilized paddy soils with a Fine silty family of Typic Halpaqueps (Pyeongtaeg series). Treatments fertilized consisted of no fertilizer, compost, NPK, NPK+compost for thirty one years and of NPK+silicate for seventeen years. Water stable aggregate and degree of aggregate stability, which were higher in surface-soil than sub-soil, were high in order of NPK + compost > NPK + silicate > compost > NPK > no fertilizer plot. The ratio of aggregate larger than 0.5mm was high at compost and silicate plots but that smaller than 0.5mm was high at no fertilizer and NPK plots. And this aggregate stability showed negative correlation with soil hardness and bulk density ; positive correlation with sedimentation volume of soils in water. Sedimentation volume of soils in water was a little higher in surface-soil than sub-soil and in wet soil than dry soil, respectively. Pore space ratio and water retention capacity of soils were the most increased by the application of compost and not affected by silicate as in cases of liquid limit and plastic limit. Ignition loss of soils was high in order of NPK + compost > compost > NPK + silicate > NPK > no fertilizer plot. And field shattering ratio of soil mass smaller than 25.4mm was relatively high in NPK + compost, compost, and silicate plots.

  • PDF

Physical Properties of Soils under the Grass Block Porous Pavements (투수성 잔디블록 포장 하부 토양의 물리성)

  • Han, Seung-Ho;Kim, Won-Tae;Kang, Jin-Hyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.4 s.117
    • /
    • pp.96-104
    • /
    • 2006
  • Impervious pavement is primary contributor to the malfunctioning of the urban water circulation system. The aim of this research is to provide basic information and data for new pavement materials and paving technology which could enhance the urban water circulation system. For the study purposes, physical properties of soils sampled from 16 stations were analyzed. The sampling spots were paved with grass block porous pavement material. The findings from the analysis are as follows. The hardness of soils under the pavement was $17{\sim}22mm$ for thoroughfare and $6{\sim}32mm$ for parking areas. The bulk density was $1.42{\sim}1.81g/cm^{3}$ for thoroughfare and $1.38{\sim}1.75g/cm^{3}$ for parking area. The solid phase ration was $46.9{\sim}62.5m^{3}/m^{3}$ for thoroughfare and $45.6{\sim}61.3m^{3}/m^{3}$ for parking area. The porosity was $37.5{\sim}53.1m^{3}/m^{3}$ for thoroughfare and $38.7{\sim}54.4m^{3}/m^{3}$ for parking area. The saturated hydraulic conductivity was $8{\sim}164mm/hr$ for thoroughfare and $14{\sim}201mm/hr$ for parking area. The saturated hydraulic conductivity of the H sample area (the area was completed three months ago) and that of the other area were compared. There was up to 80% decreases of the saturated hydraulic conductivity within one year after the completion of pavement. After the first year, decrease in the saturated hydraulic conductivity was modest. Also there are changes in both surface and under soil physical properties of the grass block porous pavement depending on compaction. The extent of change depends on the degree of compaction. All these factors are combined to influence the permeability of the soil under the pavements. The results of this suggest that it is required to develop a new pavement technology which ensures both the durability and porosity of the pavement to improve the water circulation system by applying Ecological Area Rate.

MECHANICAL PROPERTIES OF TITANIUM CONNECTORS TREATED BY VARIOUS WELDING TECHNIQUES (용접방법에 의한 타이타늄 연결부의 기계적 성질에 관한 연구)

  • Lee, Soo-Young;Chang, Ik-Tae;Heo, Seong-Joo;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.545-566
    • /
    • 1999
  • The use of pure titanium and titanium alloys have been increased recently in fixed, removable prosthodontics and implant fields as a framework. But when they were used for superstructures of implant or metal framework of removable prosthesis, welding is necessary to reconnect the fracture site to control the casting distortions. To overcome the difficulties in soldering the titanium due to high oxidation property, much effort have been devoted. In this study, some of mechanical properties were compared between pure titanium and Ti-6Al-4V alloy by using after welding, electron beam welding technique and tungsten arc welding. Mechanical properties such as tensile strength, yield strength, elongation and microhardness were measured. And, in order to compare the effect of welding site and surrounding metal tissue according to the welding condition, SEM photographs were taken and element distribution was observed by Wave Dispersion Spectroscopy. Through analyses of the data, following results were obtained; 1. In items such as tensile strength, yield strength and elongation according to the welding techniques of pure titanium, only tungsten arc welded group showed significant lower value than other groups(P<0.05). 2. In items such as tensile strength and yield strength according to the welding techniques of Ti-6Al-4V alloy, control group and tungsten arc welded group showed significant difference among all the groups(P<0.05). 3. Ti-6Al-4V alloy exhibited significantly greater elongation than control group when the laser welding method and electron beam welding method were used, and elongation showed increasing tendency. 4. Pure titanium specimens exhibited increasing tendency of microhardness regardless of the weld-ing technique applied, and especially tungsten arc welded group demonstrated a great increase of microhardness than parent metal. 5. There was no hardness change in laser welded group and electron beam welded group of Ti-6Al-4V alloy, but in tungsten arc welded group, hardness changed greatly from parent metal to weld seam. 6. Through the metallographic examination and scanning electron microscopy, laser welding caused central fusion and recristallizations were formed and tungsten arc welding caused localized fusion to 0.3-0.7mm from the surface.

  • PDF

The effect of Dynamite Explosion on Physical Properties of Orchard Soil (폭약(爆藥)에 의(依)한 과수원토양(果樹園土壤)의 물리성개량(物理性改良)에 관(關)한 연구)

  • Yoo, S.H.;Koh, K.C.;Cho, Y.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.61-66
    • /
    • 1979
  • This experiment was conducted to find out the simple and economical method to improve physical properties of the soil that was very poor for the establishment of orchard. Jeonnam clay loam soils distributed mainly on rolling and hill side slope, were treated with the explosion of two kinds of dynamite at the depth of 1 m. The change of physical properties was investigated vertically and horizontally after soil profile had settled to some extent. The results were summarized as : 1. The original soil was very high in bulk density and soil hardness. Total porosity and aeration porosities were lower than critical level providing root elongation. It was more apparent in the subsoil than in the surface soil. 2. It was recognized that soil mass destruction and cracking by dynamite explosion decreased soil bulk density and soil hardness and increased porosity, especially non-capillary pores. 3. Effective radius of the improved physical properties by explosion with two dynamites was 100cm at 60cm depth and 30cm at 80cm depth. But with the use of three dynamites it was 100cm at 80cm depth. 4. It was thought that soil mass destruction and cracking caused by explosion was uneven in the two dynamites, and three dynamites was more effective to improve physical properties evenly. 5. With the use of two dynamites, Ammonium explosive was superior to gelatin dynamite.

  • PDF

Effect of Drying Time and Additives regarding the Physical Properties of Vegetable Fatty Acid Soap (식물성 지방산 비누의 물리적 특성에 대한 건조시간과 첨가물의 효과)

  • Lee, Sung-Hee;Lee, Ki-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4032-4038
    • /
    • 2014
  • Vegetable fatty acid solid soap requires a drying process for moisture evaporation and hardness after being manufactured through saponification. Although the soap is manufactured by mixing additives mainly from natural ingredients, existing studies have focused primarily on the usability of vegetable solid soap. Consequently, research into the physical properties of vegetable fatty acid solid soap mixed with natural ingredients has been unsatisfactory. Therefore, this study attempted to compare and observe the changes in the physical properties (pH, surface tension, critical micelle concentration, and cleansing power) of solid soap in accordance with the drying period and additives (tea tree E.O and $TiO_2$) using pH paper, the Du Nouy measurement method, sedimentation method, and ultrasound washer. Regardless of the mixture with additives, vegetable fatty acid solid soap showed the same pH, and there was no change in the pH while maintaining pH 8 beginning from the $2^{nd}$ weeks to $12^{th}$ weeks of drying. In addition, as a result of measuring the surface tension and CMC, regardless of the drying period, only the soap added with $TiO_2$ showed an even value of 62.5mg/L, whereas the other soap specimens showed a decline in CMC to 25mg/L on the fourth week of drying. As a result of measuring the detergency, the removal efficiency of vegetable fatty acid solid soap mixed with tea tree E.O and $TiO_2$ and dried for four weeks was 4.50~4.65%, which was higher than that of the vegetable fatty acid solid soap without additives (3.62~3.92%).