• Title/Summary/Keyword: Surface geometry

Search Result 1,291, Processing Time 0.032 seconds

Effect of the Substrate Temperature on the Characteristics of CIGS Thin Films by RF Magnetron Sputtering Using a $Cu(In_{1-x}Ga_x)Se_2$ Single Target

  • Jung, Sung-Hee;Kong, Seon-Mi;Fan, Rong;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.382-382
    • /
    • 2012
  • CIGS thin films have received great attention as a promising material for solar cells due to their high absorption coefficient, appropriate bandgap, long-term stability, and low cost production. CIGS thin films are deposited by various methods such as co-evaporation, sputtering, spray pyrolysis and electro-deposition. The deposition technique is one of the most important processes in preparing CIGS thin film solar cells. Among these methods, co-evaporation is one of the best technique for obtaining high quality and stoichiometric CIGS films. However, co-evaporation method is known to be unsuitable for commercialization. The sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have prepared by rf magnetron sputtering using a $Cu(In_{1-x}Ga_x)Se_2$ single quaternary target without post deposition selenization. This process has been examined by the effects of deposition parameters on the structural and compositional properties of the films. In addition, we will explore the influences of substrate temperature and additional annealing treatment after deposition on the characteristics of CIGS thin films. The thickness of CIGS films will be measured by Tencor-P1 profiler. The crystalline properties and surface morphology of the films will be analyzed using X-ray diffraction and scanning electron microscopy, respectively. The optical properties of the films will be determined by UV-Visible spectroscopy. Electrical properties of the films will be measured using van der Pauw geometry and Hall effect measurement at room temperature using indium ohmic contacts.

  • PDF

Real-Time Spacer Etch-End Point Detection (SE-EPD) for Self-aligned Double Patterning (SADP) Process

  • Han, Ah-Reum;Lee, Ho-Jae;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.436-437
    • /
    • 2012
  • Double patterning technology (DPT) has been suggested as a promising candidates of the next generation lithography technology in FLASH and DRAM manufacturing in sub-40nm technology node. DPT enables to overcome the physical limitation of optical lithography, and it is expected to be continued as long as e-beam lithography takes place in manufacturing. Several different processes for DPT are currently available in practice, and they are litho-litho-etch (LLE), litho-etch-litho-etch (LELE), litho-freeze-litho-etch (LFLE), and self-aligned double patterning (SADP) [1]. The self-aligned approach is regarded as more suitable for mass production, but it requires precise control of sidewall space etch profile for the exact definition of hard mask layer. In this paper, we propose etch end point detection (EPD) in spacer etching to precisely control sidewall profile in SADP. Conventional etch EPD notify the end point after or on-set of a layer being etched is removed, but the EPD in spacer etch should land-off exactly after surface removal while the spacer is still remained. Precise control of real-time in-situ EPD may help to control the size of spacer to realize desired pattern geometry. To demonstrate the capability of spacer-etch EPD, we fabricated metal line structure on silicon dioxide layer and spacer deposition layer with silicon nitride. While blanket etch of the spacer layer takes place in inductively coupled plasma-reactive ion etching (ICP-RIE), in-situ monitoring of plasma chemistry is performed using optical emission spectroscopy (OES), and the acquired data is stored in a local computer. Through offline analysis of the acquired OES data with respect to etch gas and by-product chemistry, a representative EPD time traces signal is derived. We found that the SE-EPD is useful for precise control of spacer etching in DPT, and we are continuously developing real-time SE-EPD methodology employing cumulative sum (CUSUM) control chart [2].

  • PDF

Basic Study on the Regenerator of Stilting Engine (II) - Heat transfer and flow friction loss characteristics of the regenerator with wire screen matrix - (스털링기관용 재생기에 관한 기초연구 (II) - 철망을 축열재로 한 재생기의 전열 및 유동손실특성 -)

  • 김태한;이시민;이정택
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.529-536
    • /
    • 2002
  • The performance of stilting engine, in particular, its energy conversion efficiencies are critically influenced by the regenerator characteristics. The regenerator characteristics are influenced by effectiveness, void fraction. heat transfer loss and fluid friction loss in the regenerator matrix. These factors were influenced by the surface geometry and material properties of the regenerator matrix. The regenerator design goals arc good heat transfer and low pressure drop of working Bas across the regenerator. Various data for designing a wire screen matrix have been given by Kays and London(1984). The mesh number of their experiment. however, was confined below the No. 60. which seems rather small for the Stirling engine applications. In this paper. in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed mettled of matrix in oscillating flow as the same condition of operation in a Stirling engine. Seven kinds of sing1e wire screen meshes were used as the regenerator matrices. The results are summarized as follows; 1. While the working fluid flew slowly in the regenerator. the temperature difference was great at the both hot-blow(the working fluid flows from healer to cooler) and cold-blow(the working fluid flows from cooler to healer). On the other hand. while the working fluid flew fast. the temperature difference was not distinguished. 2. The No.150 wire screen used as the regenerator matrix showed excellent performance than tile others. 3. Phase angle variation and filling rate affected heat transfer or regenerator matrices. 4. Temperature difference between the inlet and outlet of the regenerator is very hish in degree of 120 phase angle.

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

Preparation and Characterization of Electro-Active IPMC(Ion-exchange Polymer Metal Composite) Actuator (전기활성 IPMC(ion-exchange Polymer Metal Composite) 구동기 제조 및 구동특성 연구)

  • 이준호;이두성;김홍경;이영관;최혁렬;김훈모;전재욱;탁용석;남재도
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • The low actuation voltage and quick bending response of IPMC(ion-exchange polymer metal composite) are considered attractive for the construction of various types of actuators. In this study, in order to develop a new type actuators by using the IPMC platinum electrode of IPMC are fabricated by using electroless impregnation-reduction method plating. As the platinum-plating times are increased, IPMC performance was improved in terms of bending displacement and force due to the enhanced surface conductivity. In addition, we investigated the basic actuation characteristics of resonance frequency and actuator length as well as the effect of water uptake and ion mobility. Using the classical laminate theory(CLT), a modeling methodology was developed to predict the deformation, bending moment, and residual stress distribution of anisotropic IPMC thin plates. In this modeling methodology, the internal stress evolved by the unsymmetric distribution of water inside IPMC was quantitatively calculated and subsequently the bending moment and the curvature were estimated for various geometry of IPMC actuator.

APOLLO2 YEAR 2010

  • Sanchez, Richard;Zmijarevi, Igor;Coste-Delclaux, M.;Masiello, Emiliano;Santandrea, Simone;Martinolli, Emanuele;Villate, Laurence;Schwartz, Nadine;Guler, Nathalie
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.474-499
    • /
    • 2010
  • This paper presents the mostortant developments implemented in the APOLLO2 spectral code since its last general presentation at the 1999 M&C conference in Madrid. APOLLO2 has been provided with new capabilities in the domain of cross section self-shielding, including mixture effects and transfer matrix self-shielding, new or improved flux solvers (CPM for RZ geometry, heterogeneous cells for short MOC and the linear-surface scheme for long MOC), improved acceleration techniques ($DP_1$), that are also applied to thermal and external iterations, and a number of sophisticated modules and tools to help user calculations. The method of characteristics, which took over the collision probability method as the main flux solver of the code, allows for whole core two-dimensional heterogeneous calculations. A flux reconstruction technique leads to fast albeit accurate solutions used for industrial applications. The APOLLO2 code has been integrated (APOLLO2-A) within the $ARCADIA^{(R)}$ reactor code system of AREVA as cross section generator for PWR and BWR fuel assemblies. APOLLO2 is also extensively used by Electricite de France within its reactor calculation chain. A number of numerical examples are presented to illustrate APOLLO2 accuracy by comparison to Monte Carlo reference calculations. Results of the validation program are compared to the measured values on power plants and critical experiments.

Diameter Measurement of Cylindrical Objects by Non-Contact Method (비접촉식 방법에 의한 원통형 물체의 지름 측정)

  • Im, Bok-Ryoung;Kim, Sok-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Although there are many ways to measure the diameter of a cylindrical object, in this study, the diameter of a cylindrical objects were measured by the geometric optical method and interference-diffraction method which are two kinds of tipical non-contact methods. In geometric optical method, the curved laser beam is formed on the cylindrical surface by spreading the inclined laser beam using the cylindrical lens. The curve is captured by CCD camera and the diameter is calculated by geometry. And the interference and diffraction patterns of investigated cylindrical objects are analyzed in interference-diffraction method. In this study, the cylindrical objects, whose diameters are $0.05\;mm\;\~\;100.50\;mm$ were measured by the geometric optical method and interference-diffraction method. The results show that in each method, the relative errors of the measurement are within $2\%$ and $1\%$, respectively and these non-contact methods can be applied in the quick measurement of many objects.

Heat Transfer in the Passive Containment Cooling System (수동형 격납용기 냉각계통에서의 열전달)

  • Cha, Jong-Hee;Jun, Hyung-Gil;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.281-291
    • /
    • 1995
  • The objective of this work is to obtain the experimental data for the heat transfer processes occurring both on the inside and outside surfaces of containment steel wall with dry and wet outer surface conditions in the passive containment cooling system. The test model represented a 60$^{\circ}$ section of a containment vessel based on the AP 600 geometry. Major linear dimensions of the test model ore reduced tv a factor of ten. To simulate the decay heat a steam generator heated by electricity was placed in the test model. The maximum heat flux was 8.91 kW/$m^2$. Two types of tests were performed. The one was the tort on the natural convection of air without water film flow. The other was the evaporative heat transfer test with the falling water film flow and natural air draft. no test result shooed that the heat transfer capability by the natural convection from the containment to the air without oater film flow was limited at about 1.48 kW/$m^2$ heat flux. It was found that the heat removal capability was remarkably enhanced in the tests with the waster film flow and air draft. The obtained heat transfer data ore compared with the existing correlations.

  • PDF

A Study on Performance Improvement of Whirling Machines (Whirling machine의 성능 개선을 위한 연구)

  • Lee Jung-Ki;Yang Woo-suk;Son Jea-seok;Han Hui-duck;Kim Han-soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1416-1429
    • /
    • 2005
  • In order to meet the increasing competitive pressures coupled with higher demands for component quality, whirling machines have been at the cutting edge of the automobile industry for more than 25 years. The hard whirling process can save on machining time and operation elimination. Hard whirling is done dry, without coolant. The chips carry away nearly all of the heat during cutting, leaving the workpiece cool and minimizing any thermal geometry variations. The surface finish and profile accuracy are close to grinding quality. Whirling machines usually consist of four major parts; 1) loading system that requires the necessary axial speeds, 2) head stock that needs high precision clamping and positioning system at the chuck and tailstock, 3) whirling unit that demands the high cutting speeds and cutting power fer cutting deep thread profiles and 4) unloading system that requires an easy workpiece unloading. Also, capabilities of the whirling machine can be improved by attaching a vision system to the machine. Most of whirling machines in Korean automobile industry are imported from the Leistritz company, Germany and the Hasegawa company, Japan. Tn this paper, a basic research will be performed to improve and enhance the existing whirling machines. Finally, a new Korean whirling machine will be proposed and developed.

Research on ultra-precision fine-pattern machining through single crystal diamond tool fabrication technology (단결정 다이아몬드공구 제작 기술을 통한 초정밀 미세패턴 가공 연구)

  • Jung, Sung-Taek;Song, Ki-Hyeong;Choi, Young-Jae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • As the consumer market in the VR(virtual reality) and the head-up display industry grows, the demand for 5-axis machines and grooving machines using on a ultra-precision machining increasing. In this paper, ultra-precision diamond tools satisfying the cutting edge width of 500 nm were developed through the process research of a focused ion beam. The material used in the experiment was a single-crystal diamond tool (SCD), and the equipment for machining the SCD used a focused ion beam. In order to reduce the influence of the Gaussian beam emitted from the focused ion beam, the lift-off process technology used in the semiconductor process was used. 2.9 ㎛ of Pt was coated on the surface of the diamond tool. The sub-micron tool with a cutting edge of 492.19 nm was manufactured through focused ion beam machining technology. Toshiba ULG-100C(H3) equipment was used to process fine-pattern using the manufactured ultra-precision diamond tool. The ultra-precision machining experiment was conducted according to the machining direction, and fine burrs were generated in the pattern in the forward direction. However, no burr occurred during reverse machining. The width of the processed pattern was 480 nm and the price of the pitch was confirmed to be 1 ㎛ As a result of machining.