DOI QR코드

DOI QR Code

APOLLO2 YEAR 2010

  • Sanchez, Richard (Commissariat a l'Energie Atomique et aux Energies Alternatives Direction de l'Energie Nucleaire Service d'Etudes de Reacteurs et de Mathematiques Appliquees) ;
  • Zmijarevi, Igor (Commissariat a l'Energie Atomique et aux Energies Alternatives Direction de l'Energie Nucleaire Service d'Etudes de Reacteurs et de Mathematiques Appliquees) ;
  • Coste-Delclaux, M. (Commissariat a l'Energie Atomique et aux Energies Alternatives Direction de l'Energie Nucleaire Service d'Etudes de Reacteurs et de Mathematiques Appliquees) ;
  • Masiello, Emiliano (Commissariat a l'Energie Atomique et aux Energies Alternatives Direction de l'Energie Nucleaire Service d'Etudes de Reacteurs et de Mathematiques Appliquees) ;
  • Santandrea, Simone (Commissariat a l'Energie Atomique et aux Energies Alternatives Direction de l'Energie Nucleaire Service d'Etudes de Reacteurs et de Mathematiques Appliquees) ;
  • Martinolli, Emanuele (AREVA Engineering & Projects) ;
  • Villate, Laurence (AREVA Engineering & Projects) ;
  • Schwartz, Nadine (EDF R&D) ;
  • Guler, Nathalie (EDF R&D)
  • Received : 2010.07.24
  • Published : 2010.10.31

Abstract

This paper presents the mostortant developments implemented in the APOLLO2 spectral code since its last general presentation at the 1999 M&C conference in Madrid. APOLLO2 has been provided with new capabilities in the domain of cross section self-shielding, including mixture effects and transfer matrix self-shielding, new or improved flux solvers (CPM for RZ geometry, heterogeneous cells for short MOC and the linear-surface scheme for long MOC), improved acceleration techniques ($DP_1$), that are also applied to thermal and external iterations, and a number of sophisticated modules and tools to help user calculations. The method of characteristics, which took over the collision probability method as the main flux solver of the code, allows for whole core two-dimensional heterogeneous calculations. A flux reconstruction technique leads to fast albeit accurate solutions used for industrial applications. The APOLLO2 code has been integrated (APOLLO2-A) within the $ARCADIA^{(R)}$ reactor code system of AREVA as cross section generator for PWR and BWR fuel assemblies. APOLLO2 is also extensively used by Electricite de France within its reactor calculation chain. A number of numerical examples are presented to illustrate APOLLO2 accuracy by comparison to Monte Carlo reference calculations. Results of the validation program are compared to the measured values on power plants and critical experiments.

Keywords

References

  1. S. Rauck, R. Sanchez, I. Zmijarevic and M. Nobile, “A Multigroup Albedo Method for Transport Calculations: Application to the Orphée Core,” Nucl. Sci. Eng. 135, 73 (2000). https://doi.org/10.13182/NSE00-A2126
  2. G. Willermoz, A. Aggery, D. Blanchet, S. Cathalau, C. Chichoux, J. Di-Salvo, C. Doderlein, D. Gallo, F. Gaudier, N. Huot, S. Loubiere, B. Noel and H. Serviere, “HORUS3D code package development and validation for the JHR modeling,” Proc. Int. Conf. The Physics of Fuel Cycles and Advanced Nuclear Systems (PHYSOR 2004), Chicago, IL, USA, April 25-29, 2004.
  3. N. Huot, A. Aggery, D. Blanchet, C. D’Aletto, J. Di Salvo, C. Doderlein, P. Sireta and G. Willermoz, “The JHR Neutronics Calculation Scheme Based on the Method of Characteristics,” Proc. Int. Top. Mtg. on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications (M&C 2005), Avignon, France, Sept 12-15, 2005.
  4. R. Sanchez and A. Chetaine, “A synthetic acceleration for a two-dimensional characteristic method in unstructured meshes,” Nucl. Sci. Eng., 136, 122 (2000). https://doi.org/10.13182/NSE136-122
  5. G. Campioni and B. Desbriere, “HFR advanced computation’s models,” Proc. Int. Conf. on Physics of Reactors, “Nuclear Power: A Sustainable Resource,” (PHYSOR 2008), Interlaken, Switzerland, Sept. 14-19, 2008.
  6. A Tsilanzara, C.M. Diop, B. Nimal et al., “DARWIN: an Evolution Code System for a Large Range of Applications,” Nucl. Sci. and Technology, 37, Part SUPP/1, 845, (2000).
  7. B. Roque, N. Thiollay, P. Marimbeau, A. Barreau, A. Tsilanzara, C. Garzenne and F. Marcel, “Experimental validation of the code system DARWIN for spent fuel isotopic predictions in fuel cycle applications,” Proc. Int. Conf. on Reactor Physics Safety and High-Performance Computing (PHYSOR 2002), Seoul, Korea, 7-10 October, 2002.
  8. J.-M. Gomit, E. Letang, C. Fedon-Magnaud, C. Diop and J.-P. Grouiller, “CRISTAL V1: Criticality Package for Burnup Credit Calculation,” Proc. of the NCSD 2005 Meeting on Integrating Criticality Safety into the Resurgence of Nuclear Power, Knoxville, TN, USA, September 18-22, 2005.
  9. F. Curca-Tivig, S. Merk, A. Pautz, S. Thareau, “ARCADIA${\circledR}$ - A new generation of coupled neutronics / core thermalhydraulics code system at AREVA NP,” Proc. Int. Conf. LWR Fuel Performance Meeting, San Francisco, CA, USA, Sept., 2007.
  10. A. Santamarina, C. Collignon, C. Garat, “French Calculation Schemes for Light Water Reactor Analysis,” Proc. Int. Conf. on the Physics of Fuel Cycles and Advanced Nuclear Systems (PHYSOR2004), Chicago, IL, USA, April 25-29, 2004.
  11. D.G. Cacuci, J.M. Aragonés, D. Bestion, P. Coddington, L. Dada and C. Chauliac, “NURESIM: A European Platform for Nuclear Reactor Simulation,” Proc. FISA 2006: EU Research and Training in Reactor Systems, European Commission, Luxembourg, March 13-16, 2006.
  12. G.B. Bruna, F. Dubois, F. Fouquet, J-C. Le Pallec, E. Richebois, E. Hourcade, C. Poinot-Salanon and E. Royer, “HEMERA: a 3D coupled core-plant system for accidental reactor transient simulation,” Proc. ICAPP seventh Int. Conf. on Advances in Nuclear Power Plants, Nice, France, May 13-18, 2007.
  13. A. Santamarina, D. Bernard, P. Blaise, M. Coste, A. Courcelle, T.D. Huynh, C. Jouanne, P. Leconte, O. Litaize, S. Mengelle, G. Noguere, J-M. Ruggieri, O. Serot, J. Tommasi, C. Vaglio-Gaudard, J-F. Vidal, “The JEFF-3.1.1 Nuclear Data Library, JEFF Report 22, Validation Results from JEF-2.2 to JEFF-3.1.1,” NEA No. 6807, OECD/NEA Edition 2009.
  14. C. J. Dean, R. J. Perry, “Weighting spectra for the Xmas group scheme,” Winfrith Technology Center, 1990.
  15. N. Hfaiedh, A. Santamarina, “Determination of the optimised SHEM mesh for transport calculation,” Proc. Int. Top. Mtg. on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications (M&C2005), Avignon, France, Sept 12-15, 2005.
  16. A. Santamarina, N. Hfaiedh, R. Le Tellier, V. Marotte, S. Misu, A. Sargeni, C. Vaglio-Gaudard, I. Zmijarevic, “Advanced neutronics tools for BWR design calculations,” Nucl. Eng. and Design 238, 1965 (2008). https://doi.org/10.1016/j.nucengdes.2007.12.012
  17. J-F. Vidal, R. Tran, O. Litaize, D. Bernard, A. Santamarina, C. Vaglio-Gaudard, “New modelling of LWR assemblies using the APOLLO2 code package,” Proc. Joint Int. Top. Mtg. on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, USA, April 15-19, 2007.
  18. A. Santamarina, C. Chabert, A. Courcelle, O. Litaize, G. Willermoz, D. Biron, L. Daudin, “Qualification of the APOLLO2.5/CEA93.V6 code for UOX and MOX fuelled PWRs,” Proc. Int. Conf. on Reactor Physics Safety and High-Performance Computing (PHYSOR 2002), Seoul, Korea, 7-10 October, 2002.
  19. A. Santamarina, D. Bernard, P. Blaise, L. Erradi, P. Leconte, R. Le Tellier, C. Vaglio-Gaudard, J-F. Vidal, APOLLO2.8: a validated code package for PWR neutronics calculations,” Proc. Int. Conf. on Advances in Nuclear Fuel Management (ANFM-IV), Hilton Head Island, SC, USA, April 12-15, 2009.
  20. O. Litaize, A. Santamarina, C. Chabert, “Analysis of the Mistral Experiment with APOLLO2. Qualification of neutronic Parameters of UOX and MOX Cores,” Proc. Int. Conf. on Reactor Physics Safety and High-Performance Computing (PHYSOR2002), Seoul, Korea, 7-10 October, 2002.
  21. A. Santamarina, C. Vaglio-Gaudard, P. Blaise, N. Huot, S. Thareau, O. Litaize, N. Thiollay, J-F. Vidal, “The PERLE Experiment for the qualification of EPR heavy reflector,” Proc. Int. Conf. on Physics of Reactors, “Nuclear Power: A Sustainable Resource,” (PHYSOR 2008), Interlaken, Switzerland, Sept. 14.19, 2008.
  22. P. Leconte, J-F. Vidal, D. Bernard, A. Santamarina, R. Eschbach, “Qualification of the APOLLO2.8 code package for the calculation of the fuel inventory and reactivity loss of UOx spent fuels in BWRs,” Ann. Nucl. Energy 36, 362 (2009). https://doi.org/10.1016/j.anucene.2008.11.028
  23. L. Mondelain, I. Zmijarevic, J-M. Do and V. Bellanger, “Use of APOLLO2 for BWR Assembly Analysis,” Proc. Joint Int. Top. Mtg. on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, USA, April 15-19, 2007.
  24. C.M. Diop, O. Petit, E. Dumonteil, F-X. Hugot, Y.K. Lee, A. Mazzolo and J-C. Trama, “Review of the TRIPOLI-4 Monte Carlo Transport Code,” Proc. of the Int. Cong. on Advanced in Nuclear Power Plant (ICAPP 2007), Nice Acropolis, France, May 13-18, 2007.
  25. E. Dumonteil, F.X. Hugot, C. Jouanne, Y.K. Lee, F. Malvagi, A. Mazzolo, O. Petit, J-C. Trama, C. Diop, “An Overview on the Monte Carlo Particle Transport Code,” Advanced Methods, Codes, and Benchmarking of the NURESIM Platform, Proc. of the ANS 2007 Winter Meeting, Washington, D.C., USA, November 11-15, 2007.
  26. M. Coste-Delclaux, “GALILEE: A Nuclear Data Processing System for Transport, Depletion and Shielding Codes”, Proc. Int. Conf. on Physics of Reactors, “Nuclear Power: A Sustainable Resource,” (PHYSOR 2008), Interlaken, Switzerland, Sept. 14.19, 2008.
  27. A. Kavenoky, “APOLLO: A general code for transport, slowing-down and thermalization calculations in heterogeneous media,” Conference 73044 P1, Ann Arbor , Michigan, USA, April 9-11, 1973.
  28. A. Kavenoky and R. Sanchez, “The APOLLO assembly spectrum code,” ANS Int. Top. Mtg. on Advances in Reactor Physics, Mathematics and Computations, Paris, France, 1987.
  29. A. Kavenoky and M.F. Robeau, “Un systeme d’aide a la programmation scientifique ARIANE,” Premiere Colloque de Genie Lgiciel, Paris, France, June 8-10, 1982.
  30. M.F. Robeau, Commissariat a l’Energie Atomique, Personal Communication, 1986.
  31. M.F. Robeau and P. Verpeaux, Commissariat a l’Energie Atomique, Personal Communication, 1986.
  32. R. Sanchez, J. Mondot, Z. Stankovski, A. Cossic and I. Zmijarevic, “APOLLO II: A user-oriented, portable, modular code for multigroup transport assembly calculations,” Nucl. Sci. Eng., 100, 352 (1988). https://doi.org/10.13182/NSE88-3
  33. S. Loubiere, R. Sanchez, M. Coste, A. Hebert, Z. Stankovski, C. Van Der Gucht and I.Zmijarevic, “APOLLO II Twelve Years Later,” Proc. Int. Conf. on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications (M&C’99), Madrid, Spain, Sept. 27-30, 1999.
  34. “APOLLO2 workshop,” Int. Top. Mtg. on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications (M&C 2005), Avignon, France, Sept 12-15, 2005.
  35. “APOLLO2 and TRIPOLI-4 workshop,” Joint Int. Top. Mtg. on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, USA, April 15-19, 2007.
  36. In “Workshop on Transport Methods for Reactor Core Calculations ,” Proc. Int. Conf. on Advances in Reactor Physics to Power the Nuclear Renaissance (PHYSOR 2010), Pittsburgh, PA, USA, May. 9-14, 2010.
  37. R. Sanchez and J. Mondot, “A model for calculating multigroup self-shielded cross sections for a mixture of resonant absorbers in heterogeneous media,” Proc. Mtg. on Advances in Reactor Physics and Radiation Protection and Shielding, Chicago, IL, USA, Sept. 17-19, 1984.
  38. R. Sanchez, M. Coste, Z. Stankovski, C. Van der Gucht, “Models for multi-group self-shielded cross-sections calculations in the code APOLLO2,” Proc. Int. Conf. on the Physics of Reactors: Operation, Design and Computation, Marseille, France, 1990.
  39. P. Benoist, I. Petrovic, Z. Stankovski, “Improvements in leakage calculation of nuclear reactor assemblies and consistent definition of cell leakage coefficients by an equivalence procedure,” Proc. Int.. Conf. on Advances in Mathematics, Computations and Reactor Physics, Pittsburgh, PA, USA, April 28-May 1, 1991.
  40. R. Sanchez, “Une analyse des modeles de fuites,” Note CEAN-2803, Commissariat a l'Energie Atomique, 1995 (in French).
  41. A. Hebert and A. Kavenoky, “Development of the SPH homogenization method,” ANS/ENS Int. Top. Mtg. on Advances in Mathematical Methods for the Solution of Nuclear Engineering Problems, Munich, Germany, April 27-29, 1981.
  42. R. Sanchez, “Assembly homogenization techniques for core calculations,” Progress in Nuclear Energy 51, 14 (2009). https://doi.org/10.1016/j.pnucene.2008.01.009
  43. R. Sanchez and G.C. Pomraning, “A statistical analysis of the double heterogeneity problem,” Ann. Nucl. Energy, 18, 371 (1991). https://doi.org/10.1016/0306-4549(91)90073-7
  44. A. Hebert, “A collision probability analysis of the doubleheterogeneity problem,” Nucl. Sci. Eng., 115, 177 (1993). https://doi.org/10.13182/NSE115-177
  45. R. Sanchez and E. Masiello, “Treatment of the double heterogeneity with the method of characteristics,” Proc. Int. Conf. on Reactor Physics Safety and High-Performance Computing (PHYSOR2002), Seoul, Korea, 7-10 October, 2002.
  46. R. Sanchez, “Renormalized treatment of the double heterogeneity with the method of characteristics,” Proc. Int. Conf. The Physics of Fuel Cycles and Advanced Nuclear Systems (PHYSOR 2004), Chicago, IL, USA, April 25-29, 2004.
  47. R. Sanchez and M.L. Vergain, “An acceleration procedure for the iterative solution of the flux-current equations in the APOLLO-II code,” Proc. Int. Conf. on The Physics of Fuel Cycles and Advanced Nuclear Systems (PHYSOR 2004), Chicago, IL, USA, April 25-29, 2004.
  48. I. Zmijarevic, “Multidimensional Discrete Ordinates Nodal and Characteristics Methods for APOLLO2 Code,” Proc. Int. Conf. on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications (M&C.99), Madrid, Spain, Sept. 27-30, 1999.
  49. S. Perruchot-Triboulet and R. Sanchez, “Decomposition par methodes perturbatives de la variation de reactivite de deux systemes,” Note CEA N-2817, Commissariat a l’Energie Atomique, 1997 (in French).
  50. R. E. Mac Farlane, D. W. Muir and R. M. Boiscourt, “NJOY99 nuclear data processing system,” Report 12740-M, LANL, 1994.
  51. J.C. Sublet, P. Ribon, M. Coste-Delclaux, “CALENDF-2005: User Manual,” Note CEA-R-6131, Nov. 2006 (in French).
  52. P. Mosca, C. Mounier, R. Sanchez and G. Arnaud, “An adaptive energy mesh constructor for multigroup library generation for transport codes,” Nucl. Sci. Eng., accepted for publication, June, 2010.
  53. M. Coste-Delclaux and S. Mengelle, “New resonant mixture self-shielding treatment in the code APOLLO2”, Proc. Int. Conf. The Physics of Fuel Cycles and Advanced Nuclear Systems (PHYSOR 2004), Chicago, IL, USA, April 25-29, 2004.
  54. M. Coste-Delclaux, A. Aggery, N. Huot, “New Developments in Resonant Mixture Self-shielding Treatment with APOLLO2 code and Application to Jules Horowitz Reactor Core Calculation,” Proc. Int. Top. Mtg. on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications (M&C2005), Avignon, France, Sept 12-15, 2005.
  55. M. Coste, S. Perruchot-Triboulet, C. Van der Gucht, “Selfshielding calculations by APOLLO2 code for fuel pins with a temperature distribution,” Proc. ANS Winter Meeting, Saratoga Springs, NY, USA, Oct. 6-10, 1997.
  56. M. Coste-Delclaux, “Recent Progress in Self-shielding Phenomenon Modeling with the APOLLO2 code,” Proc. ANS Annual Meeting on Advancing Nuclear Technology for a Greater Tomorrow, Atlanta, GA, USA, June 14-18, 2009.
  57. T. Hazama, “Benchmark calculation of APOLLO2 and SLAROM-UF in fast reactor lattice,” Report CEA-R-6223, Commissariat a l’Energie Atomique, 2009.
  58. I. Zmijarevic, E. Masiello and R. Sanchez, “Flux reconstruction methods for assembly calculations in the code APOLLO2,” Proc. Int. Conf. Advances in Nuclear Analysis and Simulation (PHYSOR 2006), Vancouver B.C., Canada, Sept. 10-14, 2006.
  59. A. Yamamoto et al., “Benchmark problem suite for reactor physics study of LWR next generation fuels,” Nucl. Sci. Technol., 39, 900 (2002). https://doi.org/10.3327/jnst.39.900
  60. L. Mao, R. Sanchez, I. Zmijarevic and Z. Stankovski, “RZ calculations for selfshielded multigroup cross sections,” Proc. Int. Conf. Advances in Nuclear Analysis and Simulation (PHYSOR 2006), Vancouver B.C., Canada, Sept. 10-14, 2006.
  61. E. Masiello, I. Zmijarevic, “Short Characteristics Method for Two Dimensional Heterogeneous Cartesian Cells,” Proc. Int. Conf. Advances in Nuclear Analysis and Simulation (PHYSOR 2006), Vancouver B.C., Canada, Sept. 10-14, 2006.
  62. E. Masiello, R. Sanchez and I. Zmijarevic, “New Numerical Solution with the Method of Short Characteristics for 2-D Heterogeneous Cartesian Cells in the APOLLO2 Code: Numerical Analysis and Tests,” Nucl. Sci. Eng. 161, 257 (2009). https://doi.org/10.13182/NSE161-257
  63. A. Yamamoto, “Generalized Coarse-Mesh Rebalance Method for Acceleration of Neutron Transport Calculations,” Nucl. Sci. Eng. 151, 274 (2005). https://doi.org/10.13182/NSE151-274
  64. H. Hiruta, D.Y. Anistratov, “Homogenization Method for 2D Low-Order Quasidiffusion Equations for Reactor Core Calculations,” Nucl. Sci. Eng. 154, 257 (2009).
  65. “AEN/ NEA Benchmark on deterministic transport calculation without spatial homogenization,” Nuclear Science, OECD, Paris (2003).
  66. S. Santandrea and R. Sanchez, “Acceleration Techniques for the characteristics methods in unstructured meshes,” Ann. Nucl. Energy, 29, 323, 2002. https://doi.org/10.1016/S0306-4549(01)00049-4
  67. R. Barret, M. Berry, T.F. Chan, J. Demmel, J.M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, “Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods,” SIAM, 1994.
  68. S. Santandrea and R. Sanchez, “Analysis and improvements of the DPN acceleration technique for the method of characteristics in unstructured meshes,” Ann. Nucl. Energy, 32, 163-193, 2005. https://doi.org/10.1016/j.anucene.2004.08.011
  69. S. Santandrea, “An Integral Multidomain DPN Operator as Acceleration Tool for the Method of Characteristics in Unstructured Meshes,” Nuc. Sci. Eng. 155,1-13, 2006.
  70. S. Santandrea, R. Sanchez and P. Mosca, “A linear surface characteristics scheme for neutron transport in unstructured meshes,” Nuc. Sci. Eng. 160, 22, 2008.
  71. S. Santandrea, J.C. Jaboulay, P. Bellier, F. Fevotte, and H. Golfier, “Improvements and validations of the linear surface characteristics scheme,” Ann. Nucl. Energy, 36, 46, 2009. https://doi.org/10.1016/j.anucene.2008.10.007
  72. F. Fevotte, S. Santandrea and R. Sanchez, “Advance transverse integration for the method of characteristics,” Proc. Joint Int. Top. Mtg. on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, USA, April 15-19, 2007.
  73. A. Koning, R. Forrest, M. Kellett, H. Hneriksson, Y. Rugama, “The JEFF-3.1 Nuclear Data Library,” JEFF Report 21, NEA No. 6190, Data Bank, Nov. (2006).
  74. R. Sanchez, L. Mao and S. Santandrea, “Treatment of Boundary conditions in trajectory Based Deterministic Transport Methods,” Nucl. Sci. Eng. 140, 23, 2002. https://doi.org/10.13182/NSE140-23
  75. F. Damian, X. Raepsaet, M. Groizard and C. Poinot, “NEPHTIS: core depletion validation relying on 2D transport core calculations with the APOLLO2 code,” Proc. Int. Conf. Advances in Nuclear Analysis and Simulation (PHYSOR 2006), Vancouver B.C., Canada, Sept. 10-14, 2006.
  76. F. Damian, X. Raepsaet, S. Santandrea, A. Mazzolo, C. Poinot, J.C. Klein, L. Brault and C. Garat, “GT-MHR Core Modeling: From Reference Modeling Definition in Monte-Carlo Code to Calculation Scheme Validation,” Proc. Int. Conf. The Physics of Fuel Cycles and Advanced Nuclear Systems (PHYSOR 2004), Chicago, IL, USA, April 25-29, 2004.
  77. M.L. Williams, “Perturbation theory for nuclear reactor analysis,” in CRC Handbook of Nuclear Reactors Calculations, Vol. III. CRC press (1986).
  78. R. Sanchez and I. Zmijarevic, personal communication, 1996.
  79. Z. Stankovski, “Implementation of Component Concept in Silene 2d/3d Pre & Post Processing GUI,” Proc. Joint Int. Top. Mtg. on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, USA, April 15-19, 2007.
  80. P. Girieud, “SCIENCE: The new FRAMATOME 3D nuclear code package for safety analysis,” Proc. European Nucl. Conf. (ENC-94), Lyon, France, Oct. 2-6, 1994.
  81. V. Marotte, F. Clement, S. Thareau, S. Misu, I. Zmijarevic, “Industrial application of APOLLO2 to Boiling Water Reactors,” Proc. Int. Conf. Advances in Nuclear Analysis and Simulation (PHYSOR 2006), Vancouver B.C., Canada, Sept. 10-14, 2006.
  82. J. Marten, F. Clement, V. Marotte, E. Martinolli, S. Misu, S. Thareau, L. Villatte, “The new AREVA NP spectral code APOLLO2-A,” Jahrestagung Kerntechnik 2007, Karlsruhe, Germany, 2007.
  83. E. Martinolli et al., “APOLLO2-A - AREVA’s new generation lattice physics code: methodology and validation,” Proc. Int. Conf. on Advances in Reactor Physics to Power the Nuclear Renaissance (PHYSOR 2010), Pittsburgh, PA, USA, May. 9-14, 2010.
  84. A. Pautz, H.W. Bolloni, K.A. Breith, R. van Geemert, J. Heinecke, G. Hobson, S. Merk, B. Pothet, F. Curca-Tivig, “The ARTEMIS core simulator: a central component in AREVA NP’s code convergence project,” Proc. Joint Int. Top. Mtg. on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, USA, April 15-19, 2007.
  85. S. Misu, H. Moon, “The SIEMENS 3-D steady state BWR core simulator MICROBURN-B2,” Proc. Int. Mtg. on Physics of Nuclear Science and Technology, Long Island, NY, USA, Oct.5-8 , 1998.
  86. “Introduction to HDF5 Data and Programming Models” in http://www.hdfgroup.org/pubs/presentations, 2008.
  87. “MCNP - A General Monte Carlo N-Particle Transport Code, Version 5,” LANL, USA, 2004.
  88. S. Santandrea, “A new multi-domain DPN technique to accelerate the method of characteristics in unstructured meshes,” Proc. Int. Top. Mtg. on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications (M&C2005), Avignon, France, Sept 12-15, 2005.
  89. I. Zmijarevic, “Multidimensional discrete ordinates nodal and characteristics methods for the APOLLO2 code,” Proc. Int. Conf. on Mathematical Methods for Nuclear Applications,.Salt Lake City, UT, USA, Sept. 9-13, 2001.
  90. I. Zmijarevic, R. Sanchez, D. Lamponi, “Diffusion synthetic acceleration of Sn linear nodal schemes in weighted difference form,” Proc. Int. Conf. on Mathematical Methods for Nuclear Applications, Salt Lake City, UT, USA, Sept. 9-13, 2001.
  91. L. Plagne and A. Ponçot, “Generic Programming for deterministic neutron transport codes,” Proc. Int. Conf. on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and biological Applications (M&C 2005), Avignon, France, Sept 12-15, 2005.
  92. J-F. Vidal, A. Calloo and P. Blaise, “Qualification of APOLLO2.8/JEFF-3.1.1 code package for the calculations of PWR plutonium recycling using the EPICURE experiments,” Proc. Int. Conf. on Advances in Reactor Physics to Power the Nuclear Renaissance (PHYSOR 2010), Pittsburgh PA, USA, May 9-14, 2010.
  93. P. Blaise, O. Litaize, J-F. Vidal and A. Santamarina, “Qualification of the french APOLLO2.8/CEA2005v4 code package on absorber clusters in 17${\times}$17 PWR type lattices through the CAMELEON program,” Proc. Int. Conf. on Advances in Reactor Physics to Power the Nuclear Renaissance (PHYSOR 2010), Pittsburgh PA, USA, May 9-14, 2010.
  94. J-F. Vidal, R. Le Tellier, P. Blaise, G. Guillot, N. Huot, O. Litaize, A. Santamarina, N. Thiollay and C. Vaglio-Gaudard, “Analysis of the FLUOLE experiment for the APOLLO2 validation of PWR core reflectors,” Proc. Int. Conf. on Physics of Reactors, “Nuclear Power: A Sustainable Resource,” (PHYSOR 2008), Interlaken, Switzerland, Sept. 14-19, 2008.
  95. C. Vaglio-Gaudard, A. Santamarina, M. El Hachmi and O. Litaize, “Accurate calculation of void reactivity in MOX lattice. Improvement of the APOLLO2 analysis of the 100% MOX MISTRAL3 experiment,” Proc. Int. Conf. on Physics and Technology of Reactors and Applications (PHYTRA1), Marrakech, Morocco, March 14-16, 2007.
  96. T. Courau, M. Cometto, E. Girardi, D. Couyras and N. Schwartz, “Elements of Validation of Pin-by-Pin Calculations with the Future EDF Calculation Scheme Based on APOLLO2 and COCAGNE Codes”, Proc. Int. Cong. on Advances in Nucl. Power Plants (ICAPP’08), Anaheim, CA, USA, June 8-12, 2008.
  97. E. Girardi, M. Cometto, D. Couyras and N. Schwartz, “Pinby-Pin Power Reconstruction in the Future EDF Calculation Scheme”, Proc. Int. Cong. on Advances in Nucl. Power Plants (ICAPP’08), Anaheim, CA, USA, June 8-12, 2008.
  98. F. Hoareau, N. Schwartz and D. Couyras, “A predictorcorrector scheme for the microscopic depletion solver of the COCAGNE core code,” Proc. of the 18th Int. Conf. on Nuclear Engineering (ICONE18), Xi’an, China, May 17-21, 2010.
  99. J. Ragusa, R. Sanchez and S. Santandrea, “Application of duality principles to reflector homogenization,” Nucl. Sci. Eng. 157, 299 (2007). https://doi.org/10.13182/NSE07-A2729
  100. C. Sandrin, R. Sanchez and F. Dolci, “An analysis of reflector homogenization techniques for full core diffusion calculations” , Nucl. Sci. Eng. submitted June 2010.
  101. M. Grimod, R. Sanchez, F. Damian, “Neutronic Modeling for Pebble Bed Reactors,” Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, USA, May 3-7, 2009.
  102. E. Masiello, R. Clemente and S. Santandrea, “High Order Method of Characteristics for 2-D Unstructured Meshes,” Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, USA, May 3-7, 2009.
  103. G. Grassi, “A Nonlinear Space-Angle Multigrid Acceleration for the Method of Characteristics in Unstructured Meshes”, Nucl. Sci. Eng. 155, 208 (2007). https://doi.org/10.13182/NSE07-A2657
  104. E. Masiello, “Analytical Stability Analysis of the Coarse-Mesh Finite Difference Method,” Proc. Int. Conf. on Physics of Reactors, “Nuclear Power: A Sustainable Resource,” (PHYSOR 2008), Interlaken, Switzerland, Sept. 14-19, 2008.
  105. R. Sanchez and J. Ragusa, “On the discrete-ordinates like collocation method and Galerkin angular quadratures. Part I.,” Nucl. Sci. Eng. submitted May 2010.
  106. H. Golfier, R. Lenain, C. Calvin, J-J. Lautard, A-M. Baudron, P. Fougeras, P. Magat, E. Martinolli, Y. Dutheillet, “APOLLO3: a Common Project of CEA, AREVA and EDF for the Development of a New Deterministic Multi-purpose Code for Core Physics Analysis,” Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, USA, May 3-7, 2009.
  107. A.-M. Baudron and J.-J. Lautard, “SPN Core Calculations in the APOLLO3 System,” Transp. Theory Stat. Physics, submitted June 2010.
  108. J.-J. Lautard, S. Loubière and C. Fedon-Magnaud, “CRONOS2 modular computational system for neutronic core calculations,” Proc. of IAEA Specialist Mtg. on Advances Calculation Methods for Power Reactors, Cadarache, France, Sept. 10-14, 1990.
  109. G. Rimpault, D. Plisson, J. Tommasi, R. Jacqmin, J-M. Rieunier, D. Verrier and D. Biron, “The ERANOS Code and Data System for Fast Reactor Neutronic Analyses,” Proc. Int. Conf. on Reactor Physics Safety and High-Performance Computing (PHYSOR 2002), Seoul, Korea, 7-10 October, 2002.
  110. A. Tsilanzara, Personal Communication, Commissariat a l’Energie Atomique, 2010.
  111. P. Mondot and R. Sanchez, “An iterative homogenization technique that preserves assembly core exchanges,” Proc. Int. Conf. on Supercomputing in Nuclear Applications (SNA 2003), Paris, France, Sept. 22-24, 2003.

Cited by

  1. Interpretation of Fission Product Oscillations in the MINERVE Reactor, from Thermal to Epithermal Spectra vol.169, pp.3, 2011, https://doi.org/10.13182/NSE10-113
  2. A Burnup-Dependent Isomeric Production Branching Ratio Treatment vol.171, pp.1, 2012, https://doi.org/10.13182/NSE10-99
  3. Derivation of a Physically Based Hybrid Technique for the Solution of Source-Driven Time-Dependent Linear Boltzmann Equations vol.41, pp.1-2, 2012, https://doi.org/10.1080/00411450.2012.671219
  4. Neutronics Experimental Validation of the Jules Horowitz Reactor Fuel by Interpretation of the VALMONT Experimental Program—Transposition of the Uncertainties on the Reactivity of JHR With JEF2.2 and JEFF3.1.1 vol.59, pp.4, 2012, https://doi.org/10.1109/TNS.2011.2174379
  5. Development and Experimental Validation of a Calculation Scheme for Nuclear Heating Evaluation in the Core of the OSIRIS Material Testing Reactor vol.9, pp.4, 2012, https://doi.org/10.1520/JAI104026
  6. Improvements in Transport Calculations by the Energy-Dependent Fission Spectra and Subgroup Method for Mutual Self-Shielding vol.175, pp.3, 2013, https://doi.org/10.13182/NSE12-63
  7. Reactivity Loss Validation of High-Burnup PWR Fuels with Pile-Oscillation Experiments in MINERVE vol.175, pp.3, 2013, https://doi.org/10.13182/NSE12-56
  8. Monte Carlo Interpretation of the AMMON/REF Experiment in EOLE for the JHR Reactor Neutron Calculations vol.175, pp.3, 2013, https://doi.org/10.13182/NSE12-67
  9. Introduction of Thorium-Based Fuels in High Conversion Pressurized Water Reactors vol.182, pp.2, 2013, https://doi.org/10.13182/NT13-A16430
  10. Reactor Neutrinos vol.2013, pp.1687-7365, 2013, https://doi.org/10.1155/2013/453816
  11. Analysis of the AMMON Experimental Program in the EOLE Facility Supporting the Qualification of the JHR Neutron and Photon Tools vol.61, pp.4, 2014, https://doi.org/10.1109/TNS.2014.2306440
  12. Burnup Credit Implementation for PWR UOX Used Fuel Assemblies in France: From Study to Practical Experience vol.181, pp.2, 2015, https://doi.org/10.13182/NSE14-51
  13. Simulation and Comparison of the Calorimeters Measuring the Nuclear Heating in the OSIRIS Reactor, with the TRIPOLI-4 Monte-Carlo Code vol.62, pp.3, 2015, https://doi.org/10.1109/TNS.2015.2430616
  14. vol.106, pp.2100-014X, 2016, https://doi.org/10.1051/epjconf/201610602012
  15. Improved Mixed Oxide Fuel Calculations with the Evaluated Nuclear Data Library JEFF-3.2 vol.182, pp.2, 2016, https://doi.org/10.13182/NSE15-9
  16. Americium-241 integral radiative capture cross section in over-moderated neutron spectrum from pile oscillator measurements in the Minerve reactor vol.146, pp.2100-014X, 2017, https://doi.org/10.1051/epjconf/201714606016
  17. Work plan for improving the DARWIN2.3 depleted material balance calculation of nuclides of interest for the fuel cycle vol.146, pp.2100-014X, 2017, https://doi.org/10.1051/epjconf/201714609030
  18. A Measurement of the Absolute Reactor Antineutrino Flux and Spectrum at Daya Bay vol.164, pp.2100-014X, 2017, https://doi.org/10.1051/epjconf/201716407002
  19. Manufacturing Data Uncertainties Propagation Method in Burn-Up Problems vol.2017, pp.1687-6083, 2017, https://doi.org/10.1155/2017/7275346
  20. Comparison and Screening of Nuclear Fuel Cycle Options in View of Sustainable Performance and Waste Management vol.9, pp.9, 2017, https://doi.org/10.3390/su9091623
  21. HORUS3D/N Neutron Calculation Tool, a Deterministic Scheme Dedicated to JHR Design and Safety Studies pp.1943-748X, 2017, https://doi.org/10.1080/00295639.2017.1381505
  22. Improved measurement of electron antineutrino disappearance at Daya Bay vol.37, pp.1, 2013, https://doi.org/10.1088/1674-1137/37/1/011001
  23. Neutrino physics with JUNO vol.43, pp.3, 2016, https://doi.org/10.1088/0954-3899/43/3/030401
  24. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay vol.41, pp.1, 2017, https://doi.org/10.1088/1674-1137/41/1/013002
  25. vol.188, pp.1, 2017, https://doi.org/10.1080/00295639.2017.1332890
  26. Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods vol.83, pp.4, 2018, https://doi.org/10.3139/124.110910