• Title/Summary/Keyword: Surface film

Search Result 6,704, Processing Time 0.034 seconds

Prediction of the Film Thickness Variation through Film Insert Thermoforming (필름 인서트 열성형 시 필름 두께분포 예측)

  • Kim, G.Y.;Lee, K.O.;Kang, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • Film insert melding is one of the surface processes that enhances functional or aesthetic qualities of an existing product's surface. In general, film insert molding consists of three processes including thermoforming, trimming and injection molding. Thermoforming, which is the first process of film insert molding, is the most important process because the variation of film thickness has an effect on the mold design and process conditions for the subsequent processes, that are, trimming and injection molding. This study is focused on predicting the film thickness distribution through film insert thermoforming process using commercial FEM code. In order to describe rheological behavior of thermoplastic film (ABS), G'Sell's viscoelastic constitutive law was adopted. The numerical model of film insert thermoforming was established, and the simulation to predict film thickness distribution was performed. Comparison between the results of simulation and experiment was made to validate the proposed finite element analysis.

  • PDF

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.

An Experimental Study on the Effects of Porous Layer Treatment on Evaporative Cooling of an Inclined Surface (다공물질 표면처리가 경사판의 증발냉각에 미치는 영향에 관한 실험적 연구)

  • Lee Dae Young;Lee Jae Wan;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface forming thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this work, the surface is treated to have thin porous layer on the surface. With this treatment, the liquid can be spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of an inclined surface has been conducted to verify the effectiveness of the surface treatment. It is measured that the evaporative heat transfer increases about $50\%$ by the porous layer treatment as compared with that from orignal bare surfaces.

Magnetite film on iron (강재의 마그네타이트 피복에 관한 연구)

  • Kim, H. G.;Kang, T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.66-72
    • /
    • 1992
  • Magnetite film on iron surface could be coated in strongly alkaline solution (12M NaH\OH) which contained additives such as NaHCO3, KCl and NaNO2, Iron plate was immersed in boiling solution ($130^{\circ}C$) contained above mentioned additives for 1 hour. There are some microcracks and these cracks proved to be the sites for the initiation of corrosion when immersed in 3% NaCl solution. To improve corrosion resistance of the coated steel plate, chromating was done as a post treatment. Chromate film was formed on magnetite oxide film potentiostatically at-918mV/SCE for five minutes at temperature of $70^{\circ}C$ in the alkaline solution containing 5g/l Na2Cr2O7.2H2O.Cr3O4 was electrodeposited on magnetite oxide film and Cr2O3 was electrodeposited on iron surface which was assumed as surface revealed due to microcracks. Increased corrosion resistance of chromated magnetite oxide film was proved in salt spray test & immersion test.

  • PDF

Thickness and Surface Measurement of Transparent Thin-Film Layers using White Light Scanning Interferometry Combined with Reflectometry

  • Jo, Taeyong;Kim, KwangRak;Kim, SeongRyong;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2014
  • Surface profiling and film thickness measurement play an important role for inspection. White light interferometry is widely used for engineering surfaces profiling, but its applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. The conventional bucket algorithm had given inaccurate surface profiles because of the phase error that occurs when a thin-film exists on the top of the surface. Recently, reflectometry and white light scanning interferometry were combined to measure the film thickness and surface profile. These techniques, however, have found that many local minima exist, so it is necessary to make proper initial guesses to reach the global minimum quickly. In this paper we propose combing reflectometry and white light scanning interferometry to measure the thin-film thickness and surface profile. The key idea is to divide the measurement into two states; reflectometry mode and interferometry mode to obtain the thickness and profile separately. Interferogram modeling, which considers transparent thin-film, was proposed to determine parameters such as height and thickness. With the proposed method, the ambiguity in determining the thickness and the surface has been eliminated. Standard thickness specimens were measured using the proposed method. Multi-layered film measurement results were compared with AFM measurement results. The comparison showed that surface profile and thin-film thickness can be measured successfully through the proposed method.

A Study of Metal Technology in Ancient Silla Dynasity (고대신라의 금속기술 연구)

  • 강성군;조종수
    • Journal of the Korean institute of surface engineering
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1975
  • The crorosion film of gilt bronz, silver and iron objects, which were excaved from Ancient Tomb of Silla Dynasty, was removed by the electrolytic reduction process. These metallic objects were mainly investigated for microstructure, designs and gilting film etc. Most iron objects might be made by hot forging process. The cold extrusion technique might be used for gold and silver objects, in addition to an amalgam method might be applied for the gilting Au film on Cu-alloy surface. For the gilting on glass surface, first, a Cu alloy was cladded on glass , next, Au-film was obtained on the Cu-ally by the amagum method.

  • PDF

The influences of film density on hydration of MgO protective layer in plasma display panel

  • Lee, Jung-Heon;Eun, Jae-Hwan;Park, Sun-Young;Kim, Soo-Gil;Kim, Hyeong-Joon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.228-231
    • /
    • 2002
  • We report the effect of density of thin films on moisture adsorption and hydration of MgO thin film, usually used as a protective layer in AC-PDP After hydration, lots of hemispherical shaped clusters, $Mg(OH)_2$, formed on the surface of MgO thin films. However clusters formed on low-density thin films were bigger than those on high-density films. From ERD spectra, it seemed that the concentration of hydrogen was very high in the region 20 nm from the surface of MgO thin film. The low-density thin film had more hydrogen than high-density thin film. From simulation results of ERD and RBS it was found that hydration reaction also occurred in the inner part of the film. So diffusion of Mg atoms from the inner part of the film to the surface and $H_2O$ molecules from the surface to the inner part of the film is important. And because low density thin film has many short paths for diffusion of Mg atoms and $H_2O$ molecules, low-density thin film is more hydrated. So to suppress hydration of MgO thin films, high-density thin film is needed.

  • PDF

Preparation of cross-linked silk fibroin film by γ-irradiation and their application as supports for human cell culture

  • Park, Hyean-Yeol;Kim, Yoon-Seob;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • This study described about preparation of the cross-linked silk fibroin (SF) film by ${\gamma}$-irradiation of the casted SF film, which is fabricated from aqueous solution regenerated via fibers of cocoons and their application as supports for human cell culture. The properties of cross-linked SF film were evaluated by FT-IR spectroscopy, contact angle, solubility to water, thermal analysis, surface area analyzer, and morphology via scanning electron microscopy (SEM). The cross-linked SF films were not dissolved in water and exhibited the rough surface morphology, large surface area, and good thermal properties. The human fibroblast cell (CCD-986sk) and embryo kidney-ft cell were well growed on the surface of cross-linked SF film supports prepared by ${\gamma}$-irradiation. The cross-linked SF film prepared by ${\gamma}$-irradiation can be used as biomaterials for human cell culture.

Disinfection Efficacy of an Ultraviolet Light on Film Cassettes for Preventive of the Nosocomial Infection (병원감염 예방을 위한 Film Cassette의 자외선 소독 효과)

  • Kweon, Dae-Cheol;Jeon, Yong-Woong;Cho, Am
    • Journal of radiological science and technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2001
  • The bacteria infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient prevention from nosocomial infection and for improvement of the hospital environment. The laboratory result was identified non-pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection is proven suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In addition education of nosocomial infection for radiographers will be required. In conclusion, ultraviolet is considered effective to irradate bacteria. Additionally, two minutes are required to sterilize film cassettes.

  • PDF

Effect of nitrogen doping on properties of plasma polymerized poly (ethylene glycol) film

  • Javid, Amjed;Long, Wen;Lee, Joon S.;Kim, Jay B.;Sahu, B.B.;Jin, Su B.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.286-288
    • /
    • 2014
  • This study deals with the catalyst free radio frequency plasma assisted polymerization of ethylene glycol using nitrogen as reactive gas to modify the surface chemistry and morphology. The deposited film was characterized through various analysis techniques i.e. surface profilometry, Forier transform infrared spectroscopy, water contact angle and UV-visible spectroscopy to analyze film thickness, chemical structure, surface energy and optical properties respectively. The surface topography was analyzed by Atomic force microscopy. It was observed that the ethylene oxide behaviour and optical transmittance of the film were reduced with the introduction of nitrogen gas due to higher fragmentation of monomer. However the hydrophilic behavior of the film improved due to formation of new water loving functional groups suitable for biomedical applications.

  • PDF