• Title/Summary/Keyword: Surface current

Search Result 5,724, Processing Time 0.039 seconds

Effect of Period of Immersion on Corrosion Potential, Anodic Polarization, and Impedance Characteristics of Reinforced Steel in Mortar (W/C: 0.6) (모르타르(W/C:0.6)의 철근의 부식전위와 양극분극 및 임피던스 특성에 미치는 재령 년수)

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Reinforced concrete structures have found wide usage in land and maritime applications. However, the corrosion of reinforced concrete has been recognized as a serious problem from economic and safety standpoints. In previous studies, the corrosion behavior of the inner steel bar embedded in mortar (W/C: 0.4, 0.5) was investigated using electrochemical methods. In this study, multiple mortar test specimens (W/C: 0.6) with six different cover thicknesses were prepared and immersed in flowing seawater for five years. Subsequently, equations related to the cover thickness, period of immersion, and corrosion characteristics of the embedded steel bar were evaluated using electrochemical methods. Prior to immersion, the corrosion potentials indicated an increase with increasing cover thickness, and after five years, all corrosion potentials demonstrated a trend in the positive direction irrespective of the cover thickness. However, the relationships between the corrosion potential and cover thickness were not in complete agreement. Furthermore, after five years, all of the corrosion potentials indicated values that were nobler compared to those obtained prior to immersion, and their corrosion current densities also decreased compared to their values obtained prior to immersion. It was considered that the embedded steel bar was easily corroded because of the aggression of water, dissolved oxygen, and chloride ions; a higher W/C ratio also assisted the corrosion process. The corrosive products deposited on the surface of the steel bar for five years cast a resistance polarizing effect shifting the corrosion potential in the nobler direction. Consequently, it was considered that the W/C ratio of 0.6 showed nearly same results as those of W/C of 0.4 and 0.5. Therefore, the corrosion potential as well as various parameters such as the cover thickness, period of immersion, and W/C ratio must be considered at once for a more accurate evaluation of the corrosion property of reinforced steel exposed to marine environment for a long period.

Evaluation of Characteristics of Welding Zones Welded with Inconel 718 Filler Metal to Piston Crown Forged Material (피스톤 크라운용 단강에 인코넬 718 용접재료로 용접된 용접부의 특성 평가)

  • Lee, Sung-Yul;Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.334-340
    • /
    • 2016
  • The combustion chamber of a diesel engine is often exposed to a more serious wear and corrosion environment than other parts of the engine because its temperature increases as a result of using heavy oil of low quality. Therefore, repair and built-up welding methods must be performed on worn or corroded parts of the piston crown, exhaust valve, etc. from an economical point of view. In this study, Inconel 718 filler metal was used in repair welding on the groove of a forged steel specimen for a piston crown, along with built-up welding on the surface of another forged steel specimen. Then, the corrosion characteristics of the weld metal zone for the repair welding and the deposited metal zone for the built-up welding were investigated using electrochemical methods in a 35% H2SO4 solution. The deposited metal zone indicated better corrosion resistance than the weld metal zone, showing a nobler corrosion potential, higher impedance, and smaller corrosion current density. It is considered that metal elements with good corrosion resistance were generally included in the filler metal, and these elements were also greatly involved in the deposited meta by built-up welding, whereas the weld metal consisted of metal elements mixed with both the filler metal and base metal elements because of the molten pool produced by the repair welding. Finally, it is considered that the hardness of the weld metal was increased by the repair welding, whereas the built-up welding improved the corrosion resistance of the deposited metal.

Preparation and Characterization of Electrospun PAN/TiO2 Fiber Mat by Electron Beam Irradiation (전자선 조사에 의한 PAN/TiO2 전기방사 나노섬유 제조 및 특성분석)

  • Kang, Phil-Hyun;Jeun, Joon-Pyo;Seo, Dong-Kwon;Kim, Hyun-Bin;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • Abstract: In this study, PAN/$TiO_2$ fiber mats were fabricated from polyacrylonitrile (PAN) and titanium(IV) butoxide ($Ti(OBu)_4$) by an electrospinning method with various solution concentrations, applied voltages and solution flow rates. The fiber mats were irradiated with an electron beam to induce structural crosslinking and enhance photocatalytic activity. As a result, uniform and bead-free fibers without pits or cracks on surface were obtained at 5 wt% of $Ti(OBu)_4$ solution with 15 kV and 0.02 mL/min flow rate. The PAN/$TiO_2$ fiber mats were irradiated with an electron beam of 1.14 MeV acceleration voltage, 4 mA of current and $1{\times}10^4kGy$. Electron beam irradiation was enhanced the photocatalytic activity of PAN/$TiO_2$ nano fiber mat. The photocatalytic activity of the PAN/$TiO_2$ fiber mat was analyzed by degradation of methylene blue and volatile organic compounds.

Magical Realism and Antonio Negri's Theory of Art: In Light of Claire Denis' Film Vendredi Soir (마술적 리얼리즘과 네그리의 예술론: 끌레어 드니의 영화 <금요일 밤>에 비추어)

  • CHOI, Soo Im
    • Cross-Cultural Studies
    • /
    • v.34
    • /
    • pp.7-41
    • /
    • 2014
  • This article examines magical realism in contemporary european film, which is considered to be one of the most popular styles in the present culture, with regards to Antonio Negri's theory of art. Magical realism is "alternative approach to reality" (Maggie Ann Bowers, Magic(al) Realism) and defined as "a fictional technique that combines fantasy with raw physical reality or social reality in a search for truth beyond that available from the surface of everyday life" (Joan Mellen, Magic Realism). The term of Magic Realism was coined in 1923 by Franz Roh, German art historian, as the concept for the post-expressionist painting in Germany. It has flourished in the Latin-American literature during the 1950s to 1980s and spread worldwide. Since 1980s magical realism is considered to be a universal artistic mode. Since 1990s magical realism is to find in the various novels, and since 2000 one encounters magical realism in the cinema very often. Antonio Negri writes about the relationship between life, imagination, art and the political in his book Art et Multitude. According to Negri, the hard life of people in the present society liberates the imagination and this creates the art as "the excess of the existence". In this process the aesthetic becomes to the political. Negri calls this space of art as "magical time and space". Claire Denis' film Vendredi Soir is analyzed as a contemporary magic realist text, which realizes Negri's concept of art: vendredi soir (friday night) in Vendredi Soir is the magical time, when the impossible becomes the possible, and paris in the public transportation strike is the magical space, where the individuals meet the other in a new situation. The film analysis associates itself with Negri's theory of art: in Vendredi Soir, it is to see, that the excess of the existence liberates imagination and creates the magic reality both in the movements of things and the human relationship. The phenomenon of magical realism in contemporary culture can be understood as the symptom of the emotional and existential pains of contemporary people in the current world. The contemporaneity of the magical realism can be read in the film as "the metaphor for contemporary thought" (Alain Badiou, Cinema). As Antonio Negri writes, art can become "the aesthetic redemption" (Negri, Art et Multitude) for us. At the same time "(t)his is where aesthetics can be transformed into the political." (Lee, "Communism and the Void")

Ocean Surface Winds Over the Seas Around Korea Measured by the NSCAT(NASA Scatterometer) (NSCAT (NASA Scatterometer)에 의한 한국근해의 해상풍)

  • 이동규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.37-52
    • /
    • 1998
  • The NSCAT(NASA Scatterometer) carried by the japanese Advanced Earth Observing Satellite(ADEOS) was the first high resolution(25 km) device for the direct wind measurement over the ocean. Even it was ceased to operate in lune of 1977 because of the power failure, it gave the first opportunity to the marine meteorologists to study the direct measured ocean wind during its 9 months of operation, especially around Korea. This study is to show monthly mean ocean wind and wind stress curl fields around Korea from January, 1997 to June, 1997. Mean ocean winds in January are predominantly northwesterly and the strongest wind(12 m/s) is found near Vladivostok. The winds in the western East Sea are strongly inf1uenced by the mountain range in Korea and these topographically influenced winds make about five times larger wind stress curl fields than previous estimates based on the weather maps. The calculation of Sverdrup transport in the East Sea shows the possibility of the directional change of the East Korean Cold Current from southward to northward direction caused by the winter wind. The downwelling area near North Korea has maximum estimated speed of 45 m in january and this wind induced downwelling makes good condition for the formation of Intermediate East Sea Water together with vigorous mixing by the strong wind.

Fractal Analysis of Tidal Channel using High Resolution Satellite Image (고해상도 위성 영상을 이용한 조류로의 프랙털 분석)

  • Eom, Jin-Ah;Lee, Yoon-Kyung;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.567-573
    • /
    • 2007
  • Tidal channel development is influenced by sediment type, grain size, composition and tidal current. Tidal channels are usually characterized by channel formation, density and shape. Quantitative analysis of tidal channels using remotely sensed data have rarely been studied. The objective of this study is to quantify tidal channels in terms of fractal dimension and compare different inter-tidal channel patterns and compare with DEM (Digital Elevation Model). For the fractal analysis, we used box counting method which had been successfully applied to streams, coastlines and others linear features. For a study, the southern part of Ganghwado tidal flats was selected which know for high dynamics of tidal currents and vast tidal flats. This area has different widths and lengths of tidal channels. IKONOS was used for extracting tidal channels, and the box counting method was applied to obtain fractal dimensions (D) for each tidal channel. Yeochari area where channels showed less dense development and low DEM had low fractal dimenwion near $1.00{\sim}1.20$. Area (near Donggumdo and Yeongjongdo) of dendritic channel pattern and high DEM resulted in high fractal dimension near $1.20{\sim}1.35$. The difference of fractal dimensions according to channel development in tidal flats is relatively large enough to use as an index for tidal channel classification. Therefore we could conclude that fractal dimension, channel development and DEM in tidal channel has high correlation. Using fractal dimension, channel development and DEM, it would be possible to quantify the tidal channel development in association with surface characteristics.

Effect of pH on the Synthesis of $LiCoO_2$ with Malonic Acid and Its Charge/Discharge Behavior for a Lithium Secondary Battery

  • Kim, Do Hun;Jeong, Yu Deok;Kim, Sang Pil;Sim, Un Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1125-1132
    • /
    • 2000
  • The pH effect of the precursor solution on the preparation of $LiCoO_2$ by a solution phase reaction containing malonic acid was carried out. Layered $LiCoO_2$ powders were obtained with the precursors prepared at the different pHs (4, 7, and 9) and heat-treated at $700^{\circ}C(LiCoO_2-700)$ or $850^{\circ}C(LiCoO_2-850)$ in air. pHs of the media for precursor synthesis affects the charge/discharge and electrochemical properties of the $LiCoO_2electrodes.$ Upon irrespective of pH of the precursor media, X-ray diffraction spectra recorded for $LiCoO_2-850$ powder showed higher peak intensity ratio of I(003)/I(104) than that of $LiCoO_2-700$, since the better crystallization of the former crystallized better. However, $LiCoO_2$ synthesized at pH 4 displayed an abnormal higher intensity ratio of I(003)/I(104) than those synthesized at pH 7 and 9. The surface morphology of the $LiCoO_2-850$ powders was rougher and more irregular than that of $LiCoO_2-700$ made from the precursor synthesized at pH 7 and 9. The $LiCoO_2electrodes$ prepared with the precursors synthesized at pH 7 and 9 showed a better electrochemical and charge/discharge characteristics. From the AC impedance spectroscopic experiments for the electrode made from the precursor prepared in pH 7, the chemical diffusivity of Li ions (DLi+) in $Li0.58CoO_2determined$ was 2.7 ${\times}$10-8 $cm^2s-1$. A cell composed of the $LiCoO_2-700$ cathode prepared in pH 7 with Lithium metal anode reveals an initial discharge specific capacity of 119.8 mAhg-1 at a current density of 10.0 mAg-1 between 3.5 V and 4.3 V. The full-cell composed with $LiCoO_2-700$ cathode prepared in pH 7 and the Mesocarbon Pitch-based Carbon Fiber (MPCF) anode separated by a Cellgard 2400 membrane showed a good cycleability. In addition, it was operated over 100 charge/discharge cycles and displayed an average reversible capacity of nearly 130 mAhg-1.

A Classical Molecular Dynamics Study of the Mg2+ Coordination in Todorokite (토도로카이트 내 Mg2+ 배위구조에 대한 고전분자동력학 연구)

  • Kim, Juhyeok;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.151-162
    • /
    • 2019
  • Todorokite, a tunnel-structured manganese oxide, can contain cations within the relatively large nanopores created by the $3{\times}3$ Mn octahedra. Because todorokite is poorly crystalline and found as aggregates mixed with other phases of Mn oxides in nature, the coordination structure of cations in the nanopores is challenging to fully characterize in experiment. In the current article, we report the atomistic coordination structures of $Mg^{2+}$ ions in todorokite tunnel nanopores using the classical molecular dynamics (MD) simulations. In experiment, $Mg^{2+}$ is known to occupy the center of the nanopores. In our MD simulations, 60 % of $Mg^{2+}$ ions were located at the center of the nanopores; 40 % of the ions were found at the corners. All $Mg^{2+}$ located at the center formed the six-fold coordination with water molecules, just as the ion in bulk aqueous solution. $Mg^{2+}$ ions at the corners also formed the six-fold coordination with not only water molecules but also Mn octahedral surface oxygens. The mean squared displacements were calculated to examine the dynamic features of $Mg^{2+}$ ions in the one-dimensional (1D) nanopores. Our MD simulations indicate that the dynamic features of water molecules and the cations observed in bulk aqueous solution are lost in the 1D nanopores of todorokite.

Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials (기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.861-867
    • /
    • 2019
  • $Li_4Ti_5O_{12}$ is a promising next-generation anode material for lithium-ion batteries due to excellent cycle life, low irreversible capacity, and little volume expansion during charge-discharge process. However, it has poor charge capacity at high current density due to its low electrical conductivity. To improve this weakness, porous $Li_4Ti_5O_{12}$ was synthesized by sol-gel method with P123 as chelating agent. The physical characteristics of as-prepared sample was investigated by XRD, SEM, and BET analysis, and electrochemical properties were characterized by cycle performance test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). $Li_4Ti_5O_{12}$ synthesized by 0.01mol ratio of P123/Ti showed most unified particle size, high specific surface area, and relatively high porosity. EIS analysis showed that depressed semicircle size was remarkably reduced, which suggested resistance value in electrode was decreased. Capacity in rate performance showed 178 mAh/g at 0.2C, 170 mAh/g at 0.5C, 110 mA/h at 5C, and 90 mAh/g at 10C. Capacity retention also showed 99% after rate performance.

Recent Progress in Conductive Polymer-based Membranes (전도성 고분자 분리막의 최근 연구동향)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.101-119
    • /
    • 2021
  • The demand for clean water is virtually present in all modern human societies even as our society has developed increasingly more advanced and sophisticated technologies to improve human life. However, as global climate change begins to show more dramatic effects in many regions in the world, the demand for a cheap, effective way to treat wastewater or to remove harmful bacteria, microbes, viruses, and other solvents detrimental to human health has continued to remain present and remains as important as ever. Well-established synthetic membranes composed of polyaniline (PANI), polyvinylidene fluoride (PVDF), and others have been extensively studied to gather information regarding the characteristics and performance of the membrane, but recent studies have shown that making these synthetic membranes conductive to electrical current by doping the membrane with another material or incorporating conductive materials onto the surface of the membrane, such as allotropes of carbon, have shown to increase the performance of these membranes by allowing the adjustability of pore size, improving antifouling and making the antibacterial property better. In this review, modern electrically conductive membranes are compared to conventional membranes and their performance improvements under electric fields are discussed, as well as their potential in water filtration and wastewater treatment applications.