• Title/Summary/Keyword: Surface current

Search Result 5,707, Processing Time 0.032 seconds

Effect of Electrolysis Conditions on Hard Chromium Deposition from Trivalent Chromium Bath (경질용 3가 크롬전착에 미치는 전해조건의 영향)

  • Kim, Dae-Young;Park, Sang-Eon;Kim, Man;Kwon, Sik-Chul;Choi, Ju-Won;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The effect of the temperature, current density and deposit time on hard chromium deposition in trivalent chromium bath was investigated. Cathode current efficiency increased with increasing current density. Increasing bath temperature from $20^{\circ}C$ to $50^{\circ}C$, chromium deposits were produced in higher current density and the maximum current efficiency was increased. At the plating conditions of $40^{\circ}C$, $30A/dm\m^2$, the deposition thickness increased in proportion to increasing electrolysis time The rate is$ 90\mu\textrm{m}$/hrs. for 2 hours. Microhardness of chromium deposits increased with increasing bath temperature and decreasing current density, and it was constant with electrolysis time. All of bath conditions, microstructure of chromium deposits has nodular structure with some cracking pattern and nodule size increased with increasing deposit thickness.

Effect of Surface Roughness, Thickness and Current Density on Surface Resistance of Electro-deposited Copper Layer

  • Kim, Y.M.;Cho, S.K.;Choi, Y.;Lee, J.Y.;Kim, M.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.179-179
    • /
    • 2013
  • Surface resistance of electro-deposited copper with its thickness, current density and surface roughness was determined by using a 4-point probe analyzer. The copper was prepared electrochemically on 316 stainless steel substrate in copper sulfate solution at the condition of $1A/dm^2$, 298 K, and 6.5 cm-electrode distance. The surface resistance of the copper sheet in the range of $0.93-0.97{\Omega}$ increased with the copper thickness in the range of $21-70{\mu}m$. The surface resistance in the range of $0.963-1.009{\Omega}$ also increased with current density in the range of $0.5-2A/dm^2$. The increased surface resistances corresponded to 11% for thickness and 25% for current density, respectively.

  • PDF

Introduction of Surface Current Measurement Based on X-band Radar (X-밴드 레이더 기반 표층해류 계측 기법 소개)

  • Na-Yun Kang;Jose Carlos Nieto-Borge;Young-Jun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.424-425
    • /
    • 2022
  • This paper introduces X-band radar-based surface current measurement technique. A marine X-band radar used for navigation was installed at Sokcho Beach to collect surface current data in real time. Based on this, in order to verify the accuracy of the measurement of surface current (Current speed), the Korea Hydrographic and Oceanographic Agency Marine observation buoy compared it with the data. Data collected from January 2022 were compared and as a result the possibility of surface current(Current speed) measurement using radar confirmed.

  • PDF

The Effects of Pulse Current on the Surface Appearance of Chromium Plating (크롬 전착층의 표면광택에 미치는 펄스도금의 영향)

  • 한성호;권식철;여운관
    • Journal of the Korean institute of surface engineering
    • /
    • v.14 no.4
    • /
    • pp.215-220
    • /
    • 1981
  • The surface appearance of chromium electrodeposit was studied by employing a pulse curr-ent plating in self-regulating high speed (SRHS) bath containing 20 g/$\ell$, K2SiF6 7.5 g/$\ell$ SrSO4 and 250 g/$\ell$ CrO3. As the pulse frequency increased, the surface appearance changed suddenly from bright a-ppearance in a direct current plating condition to gray one in the range of pulse frequency less than about 20KHz. However the bright appearance is recovered as the pulse frequen-cy exceeded 20 KHz. This phenomena seemed to be related with the preferred orientation of electrodeposits, considering the relationship between the preferred orientation of elect-rodeposits and surface appearance in a SRHS bath. Direct current plating was also applied to both Sargent and SRHS bath and investigat-ion on surface appearance was extended to the high current density of 400 A/dm2. In a Sa-rgent bath, the increase in bath temperature was necessary for bright appearance as the current density was increased within 150 A/dm2, but bright region was shown in the cons-tant temperature of 70-75$^{\circ}C$ above the current density of 150A/dm2. On the other hand, two regions of surface brightness was found in a SRHS bath. One is region in the low temperature less than 25$^{\circ}C$ and the other in the moderate temperature range from 55$^{\circ}C$ to 65$^{\circ}C$.

  • PDF

The Effect of Additives on the Deposition Rate and the Surface Morphology of Trivalent Chromium Electrodeposits (3가 크롬도금의 전착속도 및 표면형상에 미치는 첨가제의 영향)

  • 예길촌;서경훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • The deposition rate, the current efficiency and surface morphology of trivalent Cr deposits were investigated according to additives in sulfate bath and current density. The deposition rate of the Cr deposits plated from the formic acid complexed bath was noticeably higher than that of the glycine complexed bath. The current efficiency of the deposition from formic acid bath was higher than that of the glycine bath and increased with current density in the range of 20-50 A/d$\m^2$. The current efficiency of the deposition from the formic acid bath with boric acid buffer was higher than that of the bath with aluminum sulfate or boric acid-aluminum sulfate buffers. The nodular crystallite size of the Cr deposits increased with current density and the uniform and crack-free growth of the deposits for the aluminum sulfate was observed compared to the other buffers.

Effect of Current Density and Solution pH on Properties of Electrodeposited Cu Thin Films from Sulfate Baths for FCCL Applications (Sulfate 용액을 이용하여 전기도금 한 FCCL용 Cu 필름의 특성에 미치는 전류밀도와 pH의 영향)

  • Shin, Dong-Yul;Park, Doek-Yong;Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.145-151
    • /
    • 2009
  • Nanocrystalline Cu thin films for FCCL were electrodeposited from sulfate baths to investigate systematically the influences of current density, solution pH on current efficiency, residual stress, surface morphology, and microstructure of thin Cu films. Current efficiencies were measured to be approximately 100%, irrespective of the applied current density and solution pH. But these influenced residual stress, surface morphology, XRD pattern, and grain size of electrodeposited Cu thin film. The residual stress decreased with decreasing the surface roughness, but increased with increasing the fcc(111) peak strength of XRD patterns.

Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells

  • Kamal, Husain;Ghannam, Moustafa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.232-242
    • /
    • 2015
  • Analytical study of surface recombination at the $Si/SiO_2$ interface is carried out in order to set the optimum surface conditions that result in minimum dark base current and maximum open circuit voltage in silicon solar cells. Recombination centers are assumed to form a continuum rather than to be at a single energy level in the energy gap. It is shown that the presence of a hump in the dark I-V characteristics of high efficiency PERL cells is due to the dark current transition from a high surface recombination regime at low voltage to a low surface recombination regime at high voltage. Successful fitting of reported dark I-V characteristics of a typical PERL cell is obtained with several possible combinations of surface parameters including equal electron and hole capture cross sections.

A Study of Surface leakage current of AlGaN/GaN Heterostructures (AlGaN/GaN 이종접합구조의 표면누설전류에 관한 연구)

  • Seok, O-Gyun;Choi, Young-Hwan;Lim, Ji-Yong;Kim, Young-Shil;Kim, Min-Ki;Han, Min-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.89-90
    • /
    • 2009
  • Three kind of surface-leakage-test-patterns were fabricated and measured in order to investigate the surface leakage current of AlGaN/GaN heterostructures through etched GaN buffer surface and mesa wall. The pattern which contain the mesa wall has the largest surface leakage current among them. The leakage current due to the mesa wall is predominant source of the leakage current of AlGaN/GaN devices.

  • PDF

EFFECTS OF CURRENT DENSITY AND ETCHING TIME ON ETCHING DEPTH AND SURFACE ROUGHNESS OF NI-CR-BE ALLOY (전류밀도와 식각시간이 니켈-크롬-베릴륨 합금의 식각깊이와 표면조도에 미치는 영향)

  • Jeong Seong-Kweon;Jeon Young-Chan;Jeong Chang-Mo;Lim Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.323-334
    • /
    • 2002
  • The purpose of this study is to investigate which current densities and etching times will result in an optimal etching depth and surface roughness when an Ni-Cr-Be alloy is etched with 30% perchloric acid($HClO_4$). For this study, observations were made by means of an optical three-dimensional surface roughness measuring machine and a scanning electron microscope. The etchings took place under the following conditions using current densities of $300mA/cm^2\;450mA/cm^2,\;600mA/cm^2$ and $750mA/cm^2$, and using etching time of three, five, six, seven and nine minutes. Under the conditions, the experiments reached the following conclusions. 1. When the current density is above $450mA/cm^2$ and the etching time is longer than five minutes, the etching depth increased as the current density and etching time increased. And the surface roughness was significantly influenced by the interaction of the current density and etching time. 2. Under the etching conditions of $600mA/cm^2$ and five minutes, the optimal etching depth for a resin cement space and the highest surface roughness for mechanical retention were obtained. The etching depth and surface roughness were $32.86{\mu}m$ and $7.90{\mu}m$, respectively. 3. Observations under the scanning electron microscope showed that both the corrosion at the grain boundary and the corrosion within the grain occurred on the etched surface. It was also observed that the corrosion at the grain boundary became more severe as the current density and etching time increased. In addition. at higher current densities and longer etching times general corrosion appeared.

Property and Surface Morphology of Copper Foil on the Current Density (구리 박막의 표면형상과 물성에 대한 전류밀도 영향)

  • Woo, Tae-Gyu;Park, Il-Song;Jung, Kwang-Hee;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.555-558
    • /
    • 2010
  • This study examined the effect of current density on the surface morphology and physical properties of copper plated on a polyimide (PI) film. The morphology, crystal structure, and electric characteristics of the electrodeposited copper foil were examined by scanning electron microscopy, X-ray diffraction, and a four-point probe, respectively. The surface roughness, crystal growth orientation and resistivity was controlled using current density. Large particles were observed on the surface of the copper layer electroplated onto a current density of 25 mA/$cm^2$. However, a uniform surface and lower resistivity were obtained with a current density of 10 mA/$cm^2$. One of the important properties of FCCL is the flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density rather than a high current density. Moreover, a reasonable current density is 20 mA/$cm^2$ considering the productivity and mechanical properties of copper foil.