• Title/Summary/Keyword: Surface conditions

Search Result 9,939, Processing Time 0.034 seconds

Comparison of Activity of the Muscles around the Shoulders during Push Up and Push Up Plus Exercises under Diverse Stabilization Conditions

  • Lee, Han Ki;Lee, Jun Cheol;Yoon, Seong Min
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.1
    • /
    • pp.815-823
    • /
    • 2015
  • This study aimed to examine the most effective exercise method for shoulder joint rehabilitation by comparatively observing activity of shoulder stabilizer muscles during push up and push up plus exercises under diverse stable conditions. The subjects were 20 healthy adults students who went to M university. While the subjects conducted push up and push up plus exercises under diverse stable conditions(a stable surface, a support of 25cm height, a support of 30 cm height and a balance pad), activities of the upper trapezius muscle, pectoralis major muscle, serratus anterior muscle, and triceps brachii muscle were recorded. During push up and push up plus exercises, activities of the stabilizer muscles were higher when the stable condition was changed rather than on the stable surface. In particular, when the support of 30cm height and balance pads were applied, activity of the shoulder stabilizer was highest. There were significant differences in the upper trapezius muscle and triceps brachii muscle during the push up exercise(p<.05) and in the serratus anterior muscle during the push up plus exercise(p<.05). Activities of the shoulder stabilizers were higher when the upper and lower limbs' surface stable conditions were changed than the stable surface. Therefore, when programs for rehabilitation of shoulder joints are applied, provision of diverse stable conditions according to patients' conditions will be effective methods.

Anti-icing Method of Heated Walkway in Ice Class Ships: Efficiency Verification of CNT-based Surface Heating Element Method Through Numerical Analysis

  • Woo-Jin Park;Dong-Su Park;Mun-Beom Shin;Young-Kyo Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.215-224
    • /
    • 2023
  • While melting glaciers due to global warming have facilitated the development of polar routes, Arctic vessels require reliable anti-icing methods to prevent hull icing. Currently, the existing anti-icing method, i.e., the heating coil method, has disadvantages, such as disconnection and power inefficiency. Therefore, a carbon nanotube-based surface heating element method was developed to address these limitations. In this study, the numerical analysis of the surface heating element method was performed using ANSYS. The numerical analysis included conjugate heat transfer and computational fluid dynamics to consider the conduction solids and the effects of wind speed and temperature in cold environments. The numerical analysis method of the surface heating element method was validated by comparing the experimental results of the heating coil method with the numerical analysis results (under the -30 ℃ conditions). The surface heating element method demonstrated significantly higher efficiency, ranging from 56.65-80.17%, depending on the conditions compared to the heating coil method. Moreover, even under extreme environmental conditions (-45 ℃), the surface heating element method satisfied anti-icing requirements. The surface heating element method is more efficient and economical than the heating coil method. However, proper heat flux calculation for environmental conditions is required to prevent excessive design.

Comparison of the Joint Position Sense at Knee Joint According to Surface Conditions (지지 면 조건에 따른 무릎관절의 관절 위치 재현능력 비교)

  • Hong, Young-Ju;Weon, Jong-Hyuck;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.90-96
    • /
    • 2007
  • The purpose of this study was to compare the joint position sense at the knee joint at 3 different surface conditions by using the active knee joint angle reproduction test in the standing position. Twenty healthy volunteers (10 males and 10 females) age 20~29 years were recruited for this study. The knee joint position senses were assessed at three different surface conditions: on the floor (stable condition), TOGU (soft condition), and seat fit (unstable condition) in a closed kinetic chain. Testing orders were selected randomly. The absolute angle error was defined as the absolute difference between target angles ($30^{\circ}{\sim}45^{\circ}$ knee flexion) and subject perceived angle of the knee flexion. One way ANOVA was used to compare the absolute angle of error among 3 different conditions. The Independent t-test was used to compare the absolute angle of error between male and female. The error angles were significantly different among surface conditions ($1.3^{\circ}{\pm}1.2^{\circ}$ for the floor, $2.1^{\circ}{\pm}0.9^{\circ}$ for the TOGU, and $4.4^{\circ}{\pm}1.8^{\circ}$ for the seat fit, p<.05). There was no significant difference in error angle between male and female. In conclusion, the joint position sense of the knee joint in the closed kinetic chain decreased at unstable surface conditions. The result of this study indicates that surface conditions should be considered when assessing and training the joint position sense of the knee joint in clinical setting.

  • PDF

Optimization of a geometric form and cutting conditions of a metal slitting saw by experimental method (실험적 방법을 통한 Metal slitting saw의 형상 및 절삭 조건의 최적화)

  • 정경득;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.934-938
    • /
    • 2000
  • Built-up edge affects the surface integrity of the machined surface and tool wear. Tool geometry and cutting conditions are very important factors to remove BUE. In this paper, we optimized the geometry of the metal slitting saw .1nd cutting conditions to remove BUE by the experiment. In general, the metal slitting saw is plain milling cutter with thickness less of a 3/16 inch. This is used for cutting workpiece where high dimensional accuracy and surface finish are necessary. The experiment was planned with Taguchi method that is based on the orthogonal array of design factors(coating, rake angle, number of tooth, cutting speed, feed rate). Response table was made by the value of the surface roughness, the optimized tool geometry and cutting conditions through response table could be determined. In addition. the relative effect of factors were identified by the variance analysis. filially. coating and cutting speed turned out important factors.

  • PDF

Effect of bath conditions and pulse parameters on tin surface finish for microelectronic packaging applications

  • Sharma, Ashutosh;Jung, Do-hyun;Jung, Jae-pil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.232-233
    • /
    • 2015
  • The effects of various bath conditions such as surfactant concentration, bath pH, bath temperature, agitation of bath; as well as pulse parameters such as cathodic current density, pulse duty cycle and frequency, on the grain size, surface finish, and appearance of the tin plated coatings have been investigated. The plating bath under investigation is an aqueous acidic solution composed of a mixture of $SnSO_4$, $H_2SO_4$, and a surfactant. The bath conductivity and pH are measured by a glass pH electrode. The microstructure of the coatings produced is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and surface profilometry. XRD analysis shows that the deposits consist of tetragonal ${\beta}$-Sn crystal structure irrespective of plating conditions. The mechanism involved in the morphology evolution in response to various parameters and conditions has also been discussed.

  • PDF

Analysis of Titanium Surface Characteristics according to Laser Beam Marking Conditions (레이저빔 마킹 조건에 따른 티타늄 표면특성 분석)

  • Shin, HongShik
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.39-43
    • /
    • 2013
  • Titanium has been used to satisfy various applications such as bio engineering, aerospace, electronics, automobile. Recently, micro fabrication technologies of metals such as titanium have been required to satisfy many conditions in various fields. To satisfy these demands, micro electrochemical process using laser marking can be an alternative method because it is one of the precision machining and efficient process. Micro electrochemical process using laser marking needs to accomplish form of the oxidized recast layer on metal surface by laser marking. The laser beam marking conditions such as average power, pulse repetition rate and marking speed should be properly selected to form oxidized recast layer. So, the characteristics of titanium surface according to laser marking conditions was investigated through SEM(scanning electron microscope), EDS(energy dispersive spectrometer) and surface roughness analysis.

  • PDF

The Effect of High Power Sputtering Conditions on Surface Roughness of Carbon Mold for Glass Forming (유리성형용 카본금형의 표면조도에 미치는 고출력 스퍼터링 조건의 영향)

  • Sung-Hoo Ju;Jae-Woong Yang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.46-57
    • /
    • 2024
  • In this study, the various process conditions for high-power DC Magnetron Sputtering (DCMS) on the surface roughness of carbon thin films were investigated. The optimal conditions for Si/C coating were 40min for deposition time, which does not deviate from normal plasma, to obtain the maximum deposition rate, and the conditions for the best surface roughness were -16volt bias voltage and 400watt DC power with 1.3x10-3torr chamber pressure. Under these optimal conditions, an excellent carbon thin film with a surface roughness of 1.62nm and a thickness of 724nm was obtained. As a result of XPS analysis, it was confirmed that the GLC structure (sp2 bonding) was more dominant than the DLC structure (sp3 bonding) in the thin film structure of the carbon composite layer formed by DC sputtering. Except in infrequent cases of relatively plasma instability, the lower bias voltage and applied power induces smaller surface roughness value due to the cooling effect and particle densification. For the optimal conditions for Graphite/C composite layer coating, a roughness of 36.3 nm and a thickness of 711 nm was obtained under the same conditions of the optimal process conditions for Si/C coating. This layer showed a immensely low roughness value compared to the roughness of bare graphite of 242 nm which verifies that carbon coating using DC sputtering is highly effective in modifying the surface of graphite molds for glass forming.

A Study on the Characteristics of Ultra-Precision Cutting for Al Alloy (Al합금의 초정밀 절삭특성 연구)

  • 김우순;김동현;난바의치
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.44-49
    • /
    • 2003
  • To obtain the surface roughness with range from 10nm to 1nm we need the study of ultra-precision machine, cutting condition, and materials. In this paper, the optimal cutting conditions for getting mirror surface of aluminum alloy have been examined experimentally by using ultra-precision turning machine and sing1e crystal diamond tool. In generally, the cutting conditions such as feed rate and depth of cut have effect on the surface roughness in ultra-precision turning. The result of surface roughness was measured by the ZYGO New View 200. Therefore, The surface roughness and cutting conditions has been clarified. The smooth surface of aluminum alloy less than 1nm RMS, 1nm Rmax can be obtained by the ultra-precision cutting.

Effect of Plastic Strain on the Surface Integrity of Steel (금속의 Surface Integrity에 미치는 소성스트레인의 영향)

  • Kim, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.94-102
    • /
    • 1989
  • The effect of plastic strain on the surface integrity of mild steel (SS 41) was studied. This paper shows that the recrystallization technique is adequate to evaluate the plastic strain in a machined surface experimentally. The relations between the plastic strain and the machining conditions are quantitatively evaluated by using the recrystallization technique. The obtained results are summarized as follows. 1. The surface integrity of steel is considerably influenced by the amount of surface region deformation produced by changes in cutting conditions. 2. The plastic strain in machined surface produced by changes of the cutting conditions is evaluated by the recyrstallization technique. 3. The plastic strain increases with the increase of depth of cut and the decrease of rake angle. 4. When the cutting force is high and the rake angle is small, the value of maximum true strain reaches to high. 5. The maximum true strain is related to the cutting energy, and the values increase with the increase of the unit shear and total engergy in constant depth with the increase of the energy values.

  • PDF

A Basic Study on the Surface Roughness in Turning Process Considering Taper Angle Variation (선삭공정의 각도변화가 표면거칠기에 미치는 영향에 관한 기초 연구)

  • Kim, Dong-Hyeon;Choi, Jun-Young;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.16-21
    • /
    • 2011
  • In machining operation, the quality of surface finish is an important factor for many turned products. In this paper, surface quality in turning machining considering angle variation has been investigated. To reach this goal, surface quality turning experiments are carried out according to cutting conditions with angle variation. The variable cutting conditions are cutting speed, feed rate and taper angle of workpiece. The surface roughness was measured and the effects of cutting conditions were analyzed by the method of analysis of variance (ANOVA). From the experimental results and ANOVA, it is found that a better surface roughness can be obtained as decreasing feed rate, increasing cutting speed. Taper angle variation has been more influenced by feed rate and cutting speed.