• Title/Summary/Keyword: Surface condensation

Search Result 366, Processing Time 0.024 seconds

Optimization of biodiesel production via methyl acetate reaction from cerbera odollam

  • Dhillon, Sandip Singh;Tan, Kok Tat
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.325-337
    • /
    • 2016
  • Cerbera Odollam (sea mango) is a proven promising feedstock for the production of biodiesel due to its high oil content. Fatty acid methyl esters (FAME) were produced as the final reaction product in the transesterification reflux condensation reaction of sea mango oil and methyl acetate (MA). Potassium methoxide was used as catalyst to study its reacting potential as a homogeneous base catalyst. The initial part of this project studied the optimum conditions to extract crude sea mango oil. It was found that the content of sea mango sea mango oil was 55%. This optimum amount was obtained by using 18 g of grinded sea mango seeds in 250 ml hexane. The extraction was carried out for 24 hours using solvent extraction method. Response surface methodology (RSM) was employed to determine the optimum conditions of the reaction. The three manipulated variables in this reaction were the reaction time, oil to solvent molar ratio, and catalyst wt%. The optimum condition for this reaction determined was 5 hours reaction time, 0.28 wt% of catalyst and 1:35 mol/mol of oil: solvent molar ratio. A series of test were conducted on the final FAME product of this study, namely the FTIR test, GC-FID, calorimeter bomb and viscometer test.

Production and Application of Nanoparticles by the Chemical Vapor Condensation Process (화학기상 응축법에 의한 나노분말의 제조 및 응용)

  • Kim Jin-Chun;Ha Gook-Hyun;Choi Chul-Jin;Kim Byoung-Kee
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.239-248
    • /
    • 2005
  • 1990년도 초반에 개발되어 나노분말의 제조 공정으로 집중적으로 연구되어온 화학기상응축공정은 고강도용 나노분말 소재이외에 기능성 자성재료로의 응용에 주로 이용되어 왔다. 최근에는 이러한 응용이외에 나노분말의 표면을 다양한 이종 소재로 응용하고자하는 나노캡슐(혹은 core/shell)화 제조 공정으로 진보되어 다양한 합금 시스템으로 발전하게 되었다. 특히 최근 Particles 2005, Surface Modification in Particle Technology 학회에서는 나노금속 혹은 세라믹 분말에 PMMA, PE등 polymer의 유기화합물의 코팅하여, DNA나 RNA를 부착하거나 추출해내는 나노캡슐화 공정 연구가 매우 활발하게 진행됨을 보여주고 있으며, 이들 나노 캡슐의 개발은 약물전달계(Drug delivery system), 온열치료용 및 MRI 조영제 등의 바이오재료로의 응용가능성이 크게 기대되어 이에 대한 연구들이 활발하게 진행될 것으로 예상된다.

WSR Study of Particle Size, Concentration and Chemistry Near Soot Inception (WSR 초기매연 조건에서의 입자 크기, 농도 및 화학적 특성)

  • Lee, Eui-Ju;Mulholland, George W.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1117-1123
    • /
    • 2004
  • The characteristics of soot near the soot inception point for an ethene-air flame was carried out in a WSR (well-stirred reactor). The new sampling tool like the temperature controlled filter system was introduced to minimize the condensation during sampling. The new analysis tools applied include the real time size distribution analysis with the Nano-DMA, particle size by transmission electron microscopy, C/H analysis, g filter analysis, and thermogravimetric analysis using both non-oxidative and oxidative pyrolysis. The WSR can generate young soot particles that can be collected and examined to gain insight into inception. For the current conditions, soot does not form for ${\Phi}$=1.9, inception occurs at or before ${\Phi}$=2.0, and inception combined with soot surface growth and/or coagulation occurs for ${\Phi}$=2.1. The filter samples for ${\Phi}$=1.9 are composed of volatile compounds that evolve at relatively low temperatures when heated in the presence or absence of O$_2$. The samples collected from the WSR at ${\Phi}$=2.0 and ${\Phi}$=2.1 are precursor-like in morphology and size. They have higher C/H ratios and lower organic percentages than precursor particles, but they are clearly not fully carbonized soot. The WSR PAH distribution is similar to that in young soot from inverse flames.

Synthesis and Biodistribution of Cat's Eye-shaped [57Co]CoO@SiO2 Nanoshell Aqueous Colloids for Single Photon Emission Computed Tomography (SPECT) Imaging Agent

  • Kwon, Minjae;Park, Jeong Hoon;Jang, Beom-Su;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2367-2370
    • /
    • 2014
  • "Cat's eye"-shaped $[^{57}Co]CoO@SiO_2$ core-shell nanostructure was prepared by the reverse microemulsion method combined with radioisotope technique to investigate a potential imaging agent for a single photon emission computed tomography (SPECT) in nuclear medicine. The core cobalt oxide nanorods were obtained by thermal decomposition of $Co-(oleate)_2$ precursor from radio isotope Co-57 containing cobalt chloride and sodium oleate. The $SiO_2$ coating on the surface of the core cobalt oxide nanorods was produced by hydrolysis and a condensation reaction of tetraethylorthosilicate (TEOS) in the water phase of the reverse microemulsion system. In vivo test, micro SPECT image was acquired with nude mice after 30 min of intravenous injection of $[^{57}Co]CoO@SiO_2$ core-shell nanostructure.

Numerical analysis of an air-cooled ammonia condenser with plate fins (평판핀이 부착된 공냉형 암모니아 응축기의 열전달 성능에 대한 수치적 연구)

  • Kim, Y.I.;Kang, B.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.292-299
    • /
    • 1997
  • Ammonia has been used as refrigerant for more than 100 years in absorption as well as in compression systems. Due to its poisonous and inflammable properties, however, its use has been mainly on heavy industrial plants in which regular maintenance are available. For these systems, condensers are generally water-cooled. This is suitable for large systems over 20 RT but is not suitable for small systems. In order to apply ammonia for a small system, it is important to adopt an air-cooled condenser. In this study, simple numerical analysis of an air-cooled condenser for an ammonia refrigeration system has been carried out. The condenser is designed as horizontal tubes with plate fins attached at the outer surface to enhance the air-side heat transfer rate. Effects of fin shape and arrangement are studied in detail. Since the local heat transfer coefficient is highest at the leading edge, heat flux is highest at the edge and decreases along the distance. Conditions of inlet air are also varied in the study and condenser length that is required for full condensation is calculated. The results show that it is important to enhance both the air-side and internal heat transfer coefficients.

  • PDF

Performance Prediction of Heat Exchanger for Waste Heat Recovery from Humid Flue Gases (습증기를 포함한 연소가스의 폐열회수를 위한 열교환기 성능 예측)

  • Jeong, Dong-Woon;Lee, Sang-Yong;Lee, Han-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.276-281
    • /
    • 2000
  • A simulation program using the mass transfer correlation was constructed to analyze 1-D simplified condensing flow across the tube bank. Higher efficiency was anticipated by reducing the flue gas temperature down below the dew point where the water vapor in the flue gas is condensed at the surface of the heat exchanger; that is, the heat transfer by the latent heat is added to that by the sensible heat. Thus, there can be an optimum operating condition to maximize the heat recovery from the flue gas. The temperature rises of the flue gas and the cooling water between the inlet and the outlet of the tube bank were compared with the experimental data reported previously. The predicted results agree well with the experimental data. Using this simulation program, the parametric studies have been conducted fur various operating conditions, such as the velocities and temperatures of the vapor/gas mixture and the cooling water, the number of the rows, and the conductivity of the wall material.

  • PDF

A Study on the Boiling Heat Transfer Characteristics Using Loop Type Thermosyphon

  • HAN, Kyu-il;CHO, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.257-262
    • /
    • 2016
  • Flexible two-phase thermosyphons are devices that can transfer large amounts of heat flux with boiling and condensation of working fluid resulting from small temperature differences. A flexible two-phase thermosyphon consists of a evaporator, an insulation unit, and a condenser. The working fluid inside the evaporator is evaporated by heating the evaporator in the lower part of the flexible two-phase thermosyphon and the evaporated steam rises to the condenser in the upper part to transfer heat in response to the cooling fluid outside the tube. The resultant condensed working fluid flows downward along the inside surface of the tube due to gravity. These processes form a cycle. Using R134a refrigerant as the working fluid of a loop type flexible two-phase thermosyphon heat exchanger, an experiment was conducted to analyse changes in boiling heat transfer performances according to differences in the temperature of the oil for heating of the evaporator, the temperature variations of the refrigerant, and the mass flows. According to the results of the present study, the circulation rate of the refrigerant increased and the pressure in the evaporator also increased proportionally as the temperature of the oil in the evaporator increased. In addition, the heat transfer rate of the boiler increased as the temperature of the oil in the evaporator increased.

Effect of Alumina Nanooxide Application on Nitrendipine Manufacturing Process (알루미나 나노산화물이 Nitrendipine 제조 공정에 미치는 영향)

  • Chae, E.J.;Uhm, Y.R.;Han, B.S.;Rhee, C.K.;Park, S.E.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.127-131
    • /
    • 2007
  • The alumina nano powders synthesized by levitational gas condensation (LGC) method were applied to catalyst in manufacturing process of Hanzsch reaction for Nitrendipine. The L-tartaric acid on the surface is carried out with participation of carbonyl fragments, O-H, C-H bonds which affects stereo selectivity, yield on the reagents positively. From the analysis of the IR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. From the analysis of the rR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. The newly created bonds made a chiral center on the final product.

A Study on the Improvement of the Water System in Domestic Boiler (가정용 보일러의 급탕시설 개선방안에 관한 연구)

  • Han, Gyu-Il;Park, Jong-Un
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.200-211
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

Numerical Analysis of an Air-cooled Ammonia Condenser with Plate Fins

  • Kim, Young-Il;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.104-112
    • /
    • 1998
  • Ammonia has been used as refrigerant for more than 100 years in absorption as well as in compression systems. Due to its poisonous and inflammable properties, however, its use has been mainly on heavy industrial plants in which regular maintenance is available. For these systems, condensers are generally water∼cooled. This is suitable for large systems over 20RT but is not suitable for small systems. In order to apply ammonia for a small system, it is important to adopt an air-cooled condenser. In this study, simple numerical analysis of an air-cooled condenser for an ammonia refrigeration system has been carried out. The condenser is designed as horizontal tubes with plate fins attached at the outer surface to enhance the air-side heat transfer rate. Effect of fin shape and arrangement are studied in detail. Since the local heat transfer coefficient is highest at the leading edge, heat flux is highest at the edge and decreases along the distance. Conditions of inlet air are also varied in the study and condenser length that is required for full condensation is calculated. The results show that it is important to enhance both the air-side and internal heat transfer coefficients.

  • PDF