• Title/Summary/Keyword: Surface coating layer

Search Result 1,181, Processing Time 0.026 seconds

Development of the FCCL Tie-coating layer using a Polymerization (Polymerization을 이용한 FCCL Tie-coating layer 개발 )

  • Hwang, Yeong-Rae;Yun, Yeo-Wan;Kim, Sang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.166-168
    • /
    • 2007
  • 스퍼터링법으로 제작된 FCCL은 PI필름(Poly-imide film)과 Cu layer사이에 Tie-coating layer로 Ni-Cr을 많이 사용한다. 하지만 완성된 FCCL에서 페터닝을 실시할 때 Cr성분이 소멸되지 않고 잔존하는 현상으로 누설전류가 발생 한다. 또한 Cr으로 인해 Eatching액의 오염으로 재사용의 어려움도 발생된다. 이러한 원인들은 제품의 특성들을 저하 시키므로 이를 개선할 필요가 있다. 따라서 본 연구에서는 기존의 Tie-coating layer를 대체할 물질로 Acrylic acid를 이용하여 FCCL을 제작하여 표면특성 평가를 위해 Contact angle측정과 부착력을 위한 Peel test측정과 조직분석 및 성분분석을 위해 SEM-EDS를 측정을 통하여 Polymerization을 이용한 Ti-coating layer 개발의 가능성을 확인하였다.

  • PDF

A study on the mechanical properties of TiN/DLC based functionally graded coatings

  • Song, Young-Sik;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.59-59
    • /
    • 2003
  • In recent, various functional coatings on artificial tooth implants have been conducted to enhance the bonding strength between implants and bones. Despite of these efforts, some previous reports argued that an adhesion strength between titanium implant and the final coatings like hydroxyapatite(HA) is weaker than the strength between coating and bone. In order to increase the adhesion force between the final coating and implant surface, TiN/DLC based functionally graded coating, which has higher mechanical strength than the titanium implant, was applied as a middle layer between titanium implant and final coating. Particularly we finally coated a biocompatible hydroxyapatite film on the DLC layer and examined the mechanical properties. As a result, TiN/DLC based functionally graded coating showed the higher adhesion strength compared with hydroxyapatite single layer coating on the titanium implant.

  • PDF

Assessment Corrosion and Bioactive Behavior of Bioglass Coating on Co-Cr-Mo Alloy By Electrophoretic Deposition For Biomedical Applications

  • Areege K. Abed;Ali. M. Mustafa;Ali M. Resen
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.179-194
    • /
    • 2024
  • A layer-by-layer coating was produced using electrophoretic deposition for a HA/Al2O3 coating layer and a bioglass coating layer on Co-Cr-Mo alloy with a roughness of 0.5 ㎛ (400 emery paper SiC). The corrosion behaviour was analyzed by assessing the coating layers' exceptional corrosion resistance, which outperformed the substrate. Cr ion release test using AAS was carried out, indicating that factional graded coating inhibited ion release from the uncoated substrate to coated sample. The porosity was expressed as a percentage, representing the extent of imperfections on the surface of all coatings. These imperfections fell within an acceptable range of 1% to 3%. The roughness of the coated surface was measured using atomic force microscopy, which revealed an excellent roughness value of 3.32 nm. Tape test technique for adhesion revealed that the removal area of the substrate coating layer varied by 11.92%. X-ray diffraction analysis confirmed the presence of all coating material peaks and verified phases of the deposited coating layers. These findings provided evidence that the coating composition remains unaffected by the electrophoretic deposition process. The bioactivity was assessed by immersion in a simulated bodily fluid, which revealed the formation of HCA during a period of 5 days.

Microstructural Characteristics of Al-Cr Coated Zr Alloy Fabricated by Laser Surface Melting Process (레이저 표면 용융공정으로 Al-Cr 코팅한 Zr합금의 미세조직 특성)

  • Kim, Jeong-Min;Lee, Jae-Cheol;Kim, Il-Hyun;Kim, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.563-568
    • /
    • 2017
  • In this study, the coating of an Al-Cr layer on the surface of a Zircaloy-4 alloy was carried out through plasma pretreatment coating and a laser surface melting process. Two different conditions for laser treatment, severe or minimal surface melting of the Zr alloy substrate, were applied to form the final coating. When there was significant surface melting of the Zr alloy, the solidification microstructure of the newly formed coating layer was mainly composed of needle-shaped $Al_3Zr$, Al(Cr) and $Al_7Cr$ phases. On the other hand, the solidification microstructure of the coating layer was mainly composed of Al(Cr) and $Al_7Cr$ phases when there was minimal surface melting of Zr base in the laser process. However, when the coating was maintained at $1100^{\circ}C$ for 2 hours, significant inter-diffusion occurred between the phases in the coating. As a result, the upper part of the coating layer was observed to mainly consist of $Al_3Zr$ and $Al_8Cr_5$ phases, regardless of the laser treatment conditions.

Effect of AZ31 PEO Coating Layer Formation According to Alginic Acid Concentration in Electrolyte Solution

  • Kim, Min Soo;Kim, Jong Seop;Park, Su Jeong;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.301-306
    • /
    • 2022
  • This study explored the possibility of forming a coating layer containing alginic acid on the surface of a magnesium alloy to be used as a biomaterial. We formed a coating layer on the surface of a magnesium alloy using a plasma electrolytic oxidation process in an electrolytic solution with different amounts of alginic acid (0 g/L ~ 8 g/L). The surface morphology of all samples was observed, and craters and nodules typical of the PEO process were formed. The cross-sectional shape of the samples confirmed that the thickness of the coating layer became thicker as the alginic acid concentration increased. It was confirmed that the thickness and hardness of the sample significantly increase with increasing alginic acid concentration. The porosity of the surface and cross section tended to decrease as the alginic acid concentration increased. The XRD patterns of all samples revealed the formation of MgO, Mg2SiO4, and MgF2 complex phases. Polarization tests were conducted in a Stimulate Body Fluid solution similar to the body's plasma. We found that a high amount of alginic acid concentration in the electrolyte improved the degree of corrosion resistance of the coating layer.

Electrochemical Characteristics of Arc Zn Thermal Spray Coating Layer in Sea Water (해수 내 아크 아연 용사코팅 층의 전기화학적 특성)

  • Park, Il-Cho;Seo, Gwang-Cheol;Lee, Gyeong-Woo;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.343-348
    • /
    • 2015
  • In this paper, arc Zn thermal spray coating was carried out on the SS400 steel, and then various electrochemical characteristics and surface damage behavior of Zn thermal spray coating layer were analyzed. As the results, the potential of Zn thermal spray coating layer presented driving voltage above 300 mV compare to that of SS400 steel. The passivity characteristic in anodic polarization curve was not presented. It was adequate to as sacrificial anode material. In the surface damage after galvanostatic experiments, uniform corrosion tendency of Zn thermal spray coating layer was clearly observed with acceleration of the dissolution reaction. In conclusion, Zn thermal spray coating could be determined to represent the corrosion protection effect by stable sacrificial anodic cathodic protection method in seawater because it had sufficient driving voltage and uniform corrosion damage tendency for the SS400 steel.

Effect of Binder on Coating Layer Structure and Surface Strength of Coated Paper (바인더가 도공층 구조 및 도공지의 표면 강도에 미치는 영향)

  • 이용규;황석우
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.63-72
    • /
    • 1998
  • This research was intended to evaluate the effect of carboxymethylcellulose(CMC) on the coating structure and surface strength of coated paper prepared with amphoteric latex based coating color. Printability and optical properties of coated papers were compared. The influence of the consolidation behavior of coating color on the coating structure and the surface strength of coated paper was investigated. Compared with the conventional anionic latex, amphoteric latex formed bulkyer, smoother and more porous coating layer, which in turn, restricted binder migration in the coating layers, and facilitated immobilization of coating colors. However, dry pick strength of coated paper was decreased. The addition of CMC to these systems had strongly influenced on. the consolidation behavior and porosity in the dry state, through forming the network structure of coating layers by the interaction with amphoteric latex particles. Thus, printability and optical properties of coated papers were improved. Results indicated that amphoteric latex could be practically applied to the paper coating to improve printability and optical properties of coated papers.

  • PDF

Deterioration Diagnosis of Surface and Coating Layer for Maintenance Managements of the Membrane Structure (막구조 건축물의 유지관리를 위한 표면 및 코팅층의 열화 진단)

  • Kang, Joo-Won;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2011
  • This paper contains of descriptions of deterioration diagnosis of the surface and a coating layer for maintenance managements of large spatial structures with membrane structure. Membrane is a roofing material of the structures that its performance of durability including its performance of chemical resistance and corrosive resistance is considered to be highly important. In general, the items of diagnosis for maintenance managements such as membrane extensively include the diagnosis of deterioration of the membrane surface, of a coating layer of membrane, the diagnosis of deterioration between a coating layer and fiber, of overall surface of membrane, of the class of ropes, of reinforced belts, and of the cover of rubber. The object of this study that needs maintenance managements of the membrane with PVC and FIFE which are commonly used and shows the diagnosis results of deterioration of the surface and a coating layer.

Effects of Pigment Blending and Thickener Characteristics on Calendering Response and Structure of Coated Paper-Effect of Pigment Blending on Coating Properties- (도공 안과의 혼합과 증점제의 특성과 도공지의 광택 발현성과 구조적 특성에 미치는 영향)

  • 박종열;이학래;김병수;정현채
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.62-73
    • /
    • 1998
  • The aim of this work was to investigate the effects of pigment composition on the calendering response and structure of the coated paper. Calendering response of the coated paper was determined from the gloss values of the uncalendered and calendered coated papers, and the relationship between gloss and coating structure was discussed. The surface and cross section of the coating layer was observed using a scanning electron microscope to examine the coating structure. Coating layers were hardened in epoxy resin and polished with carbimet paper disc for preparing SEM samples. Maximum calendering response was obtained for the coated paper prepared from 80pph of clay and 20pph of ground calcium carbonate (GCC) as pigments. Photomicrographs of the surface and cross section of the coating layer show that clay tends to form dense coating structure, while GCC tends to form bulky coating layer.

  • PDF

The influence of spraying conditions to the coating layer properties of Fe-Cr-Ni-Mo-Si-B alloy using the HVOF (HVOF를 이용한 Fe-Cr-Ni-Mo-Si-B계 고성능 합금 용사층의 특성에 미치는 용사조건의 영향)

  • 권기봉;조대형;장영권;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.5-10
    • /
    • 2002
  • This study was performed to investigate the influence of spraying condition to the coating layer properties of Fe-Cr-Ni-Mo-Si-B alloy using the HVOF. The investigations, such as thickness measurement, surface roughness, hardness, friction coefficient, resistance of corrosion were carried out. Matrix is prepared by gritting and coating layer is made of Fe-Cr-Ni-Mo-Si-B alloy powder using HVOF. Alumina gritting layers are superior to steel gritting layers. The less spaying distance, the more coating layer properties confirmed. The optimum spraying condition, in this study, was proved as 13inch spraying distance with feed rate 350rpm (78g/min).