• Title/Summary/Keyword: Surface and vertical observation

Search Result 132, Processing Time 0.029 seconds

Vertical Analysis of Wind Speed over South Korea for the Flight Safety of HALE UAV (장기체공무인기의 운항안전을 위한 남한지역 고도별 풍속 분석)

  • Cho, Young-Jun;Ha, Jong-Chul;Choi, Reno K.Y.;Kim, Ki-Hoon;Lim, Eunha;Kim, Su-Bok;Yun, Jong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.551-558
    • /
    • 2016
  • We analyzed wind speed over South Korea for HALE UAV(High Altitude Long Endurance Unmaned Aerial Vehicle) flight safety. Annual variation of wind speed at 200 hPa showed that winter season was stronger than summer. According to latitude, wind speeds in January and August were found to be $52{\sim}74m\;s^{-1}$ and $15{\sim}26m\;s^{-1}$, respectively. Wind speed was stronger(weaker) at lower latitudes than higher latitudes in winter(summer). Frequency(%) of wind speed less than threshold value($18m\;s^{-1}$) for the operation date was investigated. The days showing the frequency greater than 60 % in all altitudes of surface ~ 50 hPa showed the range of 1 ~ 33 days at 7 stations. Operation date was the longest period at Gosan. The appropriate date of HALE UAV operation at Gosan and Osan is considered as the middle of July ~ middle of August and end of July ~ early August, respectively. These results can be used to determine the operation date of HALE UAV.

A Study on the Stress Distribution beneath Loaded Ground Surface Area of Double Strata Ground on Soft Clay Layers (연약점토층위 이층지반 지표면 재하시 지중응력 특성연구)

  • Lim, Jong-Seok;Lee, In-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.423-428
    • /
    • 2005
  • If the load of constructing vehicles during the construction work acts on the road or the ground surface on the soft ground, due to the excess stresses in soils the trafficability of the vehicles influences the constructing efficiency, constructing period and so on. Stress distribution in soils is the very important element to design and to solve the problems of settlement, safety of foundations and trafficability of constructing vehicle in civil engineering. This research represents the comparative estimation of the actual and theoretical measurement on the underground stress of outer layer for each soil after the observation of each top soil layer for its vertical and horizontal stress in (1)homogeneous sand ground (2) weak stratum with the sand soil (3) weak stratum with gravel of the soil model, and it also investigates the effect of subsidence of ground by the repeated load. The underground stress turn out to be different in the value of theoretical and actual measurement after the trial examination of model.

  • PDF

A Three-Dimensional Numerical Study of Coastal Upwelling in the Northern Japanese Coastal Region with the Passage of Typhoon Oliwa (3차원 원시모델을 이용한 태풍통과시 일본 북부 연안역에서 발생한 연안용승 연구)

  • HONG Chul-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.723-734
    • /
    • 2003
  • A three-dimensional numerical model (POM) is implemented to examine coastal upwelling in the northern Japanese coastal region with the passage of Typhoon Oliwa in September 1997. Observed sea surface temperature (SST) decreased suddenly ranging from $-6\;to\;-7^{\circ}C$ in the coastal regions, and such a SST decrease state lasted for more than ten days after the typhoon passed. The model successfully reproduces the observation and gives a clear explanation, the sudden decrease of SST occurred in the process of coastal upwelling with Ekman dynamics. The model also describes the sea surface cooling in the open ocean with vertical velocity.

On the Near Wall Coating Flow in a Sloshing Flow of Highly-Viscous Fluid in a Rectangular Box (사각용기의 고점성 슬로싱 유동에서 발생하는 측벽 코팅 유동)

  • Jun Sang, Park
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.27-35
    • /
    • 2022
  • A problem on the sloshing flow of highly-viscous fluid in a rectangular box was revisited by both of theoretical approach and experimental visualization method. Based on the theoretical prediction that a linear shape of free surface is prevailing in bulk zone, it has been studied an analogy between a near wall coating flow in sloshing problem and dip coating flow in Landau-Levich problem. Phenomenological observation confirms that, in the case of highly-viscous fluid, I.e., Re ≪ 1, viscous dominant near-wall flow in sloshing problem is identical to dip coating flow generated by drag-out of the plate being in both motion of vertical translation and horizontal rotation.

Numerical Study on the Impact of SST Spacial Distribution on Regional Circulation (상세 해수면 온도자료의 반영에 따른 국지 기상정 개선에 관한 수치연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.304-315
    • /
    • 2009
  • Numerical simulations were carried out to understand the effect of Sea Surface Temperature (SST) spatial distribution on regional circulation. A three-dimensional non-hydrostatic atmospheric model RAMS, version 6.0, was applied to examine the impact of SST forcing on regional circulation. New Generation Sea Surface Temperature (NGSST) data were implemented to RAMS to compare the results of modeling with default SST data. Several numerical experiments have been undertaken to evaluate the effect of SST for initialization. First was the case with NGSST data (Case NG), second was the case with RAMS monthly data (Case RM) and third was the case with seasonally averaged RAMS monthly data (Case RS). Case NG showed accurate spatial distributions of SST but, the results of RM and RS were $3{\sim}4^{\circ}C$ lower than buoy observation data. By analyzing practical sea surface conditions, large difference in horizontal temperature and wind field for each run were revealed. Case RM and Case RS showed similar horizontal and vertical distributions of temperature and wind field but, Case NG estimated the intensity of sea breeze weakly and land breeze strongly. These differences were due to the difference of the temperature gradient caused by different spatial distributions of SST. Diurnal variations of temperature and wind speed for Case NG indicated great agreement with the observation data and statistics such as root mean squared error, index of agreement, regression were also better than Case RM and Case RS.

Evaluation of Upper Ocean Temperature and Mixed Layer Depth in an Eddy-permitting Global Ocean General Circulation Model (중해상도 전지구 해양대순환 모형의 상층 수온과 혼합층 깊이 모사 성능 평가)

  • Jang, Chan-Joo;Min, Hong-Sik;Kim, Cheol-Ho;Kang, Sok-Kuh;Lie, Heung-Jae
    • Ocean and Polar Research
    • /
    • v.28 no.3
    • /
    • pp.245-258
    • /
    • 2006
  • We investigated seasonal variations of the upper ocean temperature and the mixed layer depth (MLD) in an eddy-permitting global ocean general circulation model (OGCM) to assess the OGCM perfermance. The OGCM is based on the GFDL MOM3 which has a horizontal resolution of 0.5 degree and 30 vertical levels. The OGCM was integrated for 68 years using a monthly-mean climatological wind stress forcing. The model sea surface temperature (SST) and sea surface salinity were restored to the Levitus climatology with a time scale of 30 days. Annual-mean model SST shows a cold bias $(<\;-2^{\circ}C)$ in the summer hemisphere and a warm bias $(>\;1^{\circ}C)$ in the winter hemisphere mainly due to the restoring boundary condition of temperature. The model MLD captures well the observed features in most areas, with a slightly deep bias. However, in the Ross Sea and Weddell Sea, the model shows significantly deeper MLD than the climatology-mainly due to weak salinity stratifications in the model. For amplitude of seasonal variation, the model SST is smaller $(1{\sim}3^{\circ}C)$ than the observation largely due to the restoring surface boundary condition while the model MLD has larger seasonal variation $({\sim}50m)$. It is suggested that for more realistic simulation of the upper ocean structure in the present eddy-permitting ocean model, more refinements in the surface boundary condition for the thermohaline forcing and parameterization for vertical mixing are required, together with the incorporation of a sea-ice model.

Analysis of Pollutant Loads and Physical Oceanographic Status at the Developing Region of Deep Sea Water in the East Sea (동해 심층수 개발해역의 오염부하량 해석과 해동변동)

  • LEE IN-CHEOL;YOON BAN-SAM
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.14-19
    • /
    • 2005
  • As a basic study for establishing the input conditions of a forecasting/estimating model, used for deep-sea water drainage to the ocean, this study was carried out as follows: 1) estimating the amount of river discharge and pollutant loads into the developing region of deep sea water in the East Sea, Korea, 2) a field observation of tidal current, vertical water temperature, and salinity distribution, 3) 3-D numerical experiment of tidal current to analyze the physical oceanographic status. The amount of river discharge flowing into this study area was estimated at about $462.7{\times}103 m\^3/day$ of daily mean in 2002. Annual mean pollutant load of COD, TN, and TP were estimated at 7.02 ton-COD/day, 4.06 ton-TN/day, and 0.39 ton/day, respectively. Field observation of tidal current normally shows 20-40cm/sec of current velocity at the surface layer, and it decreases under 20cm/sec as the water depth increases. We also found a stratification condition at around 30m water depth in the observation area. The differences in water temperature and salinity, between the surface layer and the bottom layer, were about 18 C and 0.8 psu, respectively. On the other hand, we found a definite trend of 34 psu salinity water mass in the deep sea region.

Sensitivity of Simulated Water Temperature to Vertical Mixing Scheme and Water Turbidity in the Yellow Sea (수직 혼합 모수화 기법과 탁도에 따른 황해 수온 민감도 실험)

  • Kwak, Myeong-Taek;Seo, Gwang-Ho;Choi, Byoung-Ju;Kim, Chang-Sin;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.111-121
    • /
    • 2013
  • Accurate prediction of sea water temperature has been emphasized to make precise local weather forecast and to understand change of ecosystem. The Yellow Sea, which has turbid water and strong tidal current, is an unique shallow marginal sea. It is essential to include the effects of the turbidity and the strong tidal mixing for the realistic simulation of temperature distribution in the Yellow Sea. Evaluation of ocean circulation model response to vertical mixing scheme and turbidity is primary objective of this study. Three-dimensional ocean circulation model(Regional Ocean Modeling System) was used to perform numerical simulations. Mellor- Yamada level 2.5 closure (M-Y) and K-Profile Parameterization (KPP) scheme were selected for vertical mixing parameterization in this study. Effect of Jerlov water type 1, 3 and 5 was also evaluated. The simulated temperature distribution was compared with the observed data by National Fisheries Research and Development Institute to estimate model's response to turbidity and vertical mixing schemes in the Yellow Sea. Simulations with M-Y vertical mixing scheme produced relatively stronger vertical mixing and warmer bottom temperature than the observation. KPP scheme produced weaker vertical mixing and did not well reproduce tidal mixing front along the coast. However, KPP scheme keeps bottom temperature closer to the observation. Consequently, numerical ocean circulation simulations with M-Y vertical mixing scheme tends to produce well mixed vertical temperature structure and that with KPP vertical mixing scheme tends to make stratified vertical temperature structure. When Jerlov water type is higher, sea surface temperature is high and sea bottom temperature is low because downward shortwave radiation is almost absorbed near the sea surface.

A study on vertical distribution observation of giant jellyfish (Nemopilema nomurai) using acoustical and optical methods (음향 및 광학기법을 이용한 노무라입깃해파리 (Nemopilema nomurai)의 수층별 분포 관찰에 관한 연구)

  • Lee, Kyoung-Hoon;Kim, In-Ok;Yoon, Won-Duk;Shin, Jong-Keun;An, Heui-Chun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.4
    • /
    • pp.355-361
    • /
    • 2007
  • A giant jellyfish (Nemopilema nomurai), which is presumed developing in the East China Sea, is recently one of major issues in the Northeast Asia region due to its fatal damage to the fishery. The biomass estimates have generally been conducted by trawl sampling and sighting survey methods. The biological research is also needed to clarify such environmental origin or diurnal migration patterns. While trawl sampling or sighting survey methods are effective to investigate its density estimates in its distributed community of near bottom or surface, they have a problem in investigation on the vertical distribution of jellyfishes. In this case, an echo sounding detection would have an advantage to survey it more extensively and effectively. This trial was conducted to observe the vertical distribution of giant jellyfish, where thermocline strongly formed, during mooring at each station of the East China Sea and southern coastal area using acoustical and optical methods. By the results, they were observed to exit and move at the water column under the thermocline using the optical camera and echo sounder system, and the information was analyzed to find out the acoustical sound scattering characteristics relatives to 120kHz frequency. These results can be utilized effectively to estimate the vertical distribution and biomass of Giant jellyfish with comparing results from trawl sampling and sighting survey methods, hereafter.

Efficient excitation and amplification of the surface plasmons

  • Iqbal, Tahir
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1381-1387
    • /
    • 2018
  • One dimensional (1D) grating has been fabricated (using focused ion beam) on 50 nm gold (Au) film deposited on higher refractive index Gallium phosphate (GaP) substrate. The sub-wavelength periodic metal nano structuring enable to couple photon to couple with the surface plasmons (SPs) excited by them. These grating devices provide the efficient control on the SPs which propagate on the interface of noble metal and dielectric whose frequency is dependent on the bulk electron plasma frequency of the metal. For a fixed periodicity (${\Lambda}=700 nm$) and slit width (w = 100 nm) in the grating device, the efficiency of SPP excitation is about 40% compared to the transmission in the near-field. Efficient coupling of SPs with photon in dielectric provide field localisation on sub-wavelength scale which is needed in Heat Assisted Magnetic recording (HAMR) systems. The GaP is also used to emulate Vertical Cavity Surface emitting laser (VCSEL) in order to provide cheaper alternative of light source being used in HAMR technology. In order to understand the underlying physics, far-and near-field results has been compared with the modelling results which are obtained using COMSOL RF module. Apart from this, grating devices of smaller periodicity (${\Lambda}=280nm$) and slit width (w = 22 nm) has been fabricated on GaP substrate which is photoluminescence material to observe amplified spontaneous emission of the SPs at wavelength of 805 nm when the grating device was excited with 532 nm laser light. This observation is unique and can have direct application in light emitting diodes (LEDs).