• Title/Summary/Keyword: Surface and Internal Defects

Search Result 120, Processing Time 0.022 seconds

A Study on the Distribution of Internal Inclusions and the Fatigue Strength of Induction Surface Hardened Steel (고주파 표면경화재의 내부개재물의 분포와 피로강도에 관한 연구)

  • Song, Sam-Hong;Choi, Byoung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.333-338
    • /
    • 2000
  • Induction surface hardening is widely used to enhance local strength and hardness. However, most research is only to have a focus on fatigue life and fatigue behavior is not so much studied. So, in this study, Cr-Mo steel alloy(SCM440) was used to show the effect of residual stress and micro hole on the fatigue strength for base metal and induction surface hardened specimen. In addition, the fatigue characteristic between surface hardened and fully hardened steel is somewhat different. It is caused by hardness distribution, residual stress and inclusions etc.. Crack origins are generally micro inclusions for the high strength steel. So, the distribution of inclusions is analyzed statistically.

  • PDF

Coating defect classification method for steel structures with vision-thermography imaging and zero-shot learning

  • Jun Lee;Kiyoung Kim;Hyeonjin Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • This paper proposes a fusion imaging-based coating-defect classification method for steel structures that uses zero-shot learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured by an infrared (IR) camera, while photos of the coating surface are captured by a charge-coupled device (CCD) camera. The measured heat responses and visual images are then analyzed using zero-shot learning to classify the coating defects, and the estimated coating defects are visualized throughout the inspection surface of the steel structure. In contrast to older approaches to coating-defect classification that relied on visual inspection and were limited to surface defects, and older artificial neural network (ANN)-based methods that required large amounts of data for training and validation, the proposed method accurately classifies both internal and external defects and can classify coating defects for unobserved classes that are not included in the training. Additionally, the proposed model easily learns about additional classifying conditions, making it simple to add classes for problems of interest and field application. Based on the results of validation via field testing, the defect-type classification performance is improved 22.7% of accuracy by fusing visual and thermal imaging compared to using only a visual dataset. Furthermore, the classification accuracy of the proposed method on a test dataset with only trained classes is validated to be 100%. With word-embedding vectors for the labels of untrained classes, the classification accuracy of the proposed method is 86.4%.

Development of the Advanced NDI Technique Using an Alternating Current : the Evaluation of surface crack and blind surface crack and the detection of defects in a field component (교류전류를 이용한 새로운 비파괴탐상법의 개발;표면결함과 이면결함의 평가 및 실기 부재의 결함 검출)

  • Kim. H.;Lim, J.K.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.42-52
    • /
    • 1995
  • In the evaluation of aging degradation on the structural materials based on the fracture mechanics, the detection and size prediction of defect are very important. Aiming at nondestructive detection and size prediction ol defect with high accuracy and resolution, therefore, an lnduced Current Focusing Potential Drop(ICFPD) technique has been developed. The principle of this technique is to induce a focusing current at an exploratory region by an induction wire flowing an alternating current(AC) that is a constant ampere and frequency. Defects are assessed with the potential drops that are measured the induced current on the surface of metallic material by the potential pick-up pins. In this study, the lCFPD technique was applied for evaluating the location and size of the surface crack and blind crack made in plate specimens, and also for detecting the defects existing in valve, a field component, that were developed by SCC etc. during the service. The results of this present study show that surface crack and blind crack are able to defect with potential drop. these cracks are distinguished with the distribution of potential drop, and the crack depths can be estimated with each normalized potential drop that are parameters estimating the depth of each type crack. In the field component, the defects estimated by experiment result correspond with those in the cutting face of the measuring point within a higher sensitivity.

  • PDF

Development of New Low Frequency ECT Sensor to Detect Inner Defects(II) - Application to Welding Specimens Included Defects - (내부결함 검출 가능한 저주파 ECT 센서개발(II) - 결함을 가진 소형 용접시험편에 적용 -)

  • Park, Jeong-Ung;Jang, Mun-Seok;Gim, Guk-Ju;Kim, Beom-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.63-67
    • /
    • 2015
  • Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing(ECT) is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. The New ECT sensor which can detect inner defects was developed regardless the condition of surface. This sensor is verified to do experiment which measure the loss of induced electromotive force. The loss of induced electromotive force was measured in 5.4% and this low frequency ECT device can detect internal defects at depth 20 mm.

A Study on Scattered Field of Ultrasonic Wave Using the Boundary Element Method (경계요소법을 이용한 초음파 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.130-137
    • /
    • 2000
  • Ultrasonic technique which is one of the most common and reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal scattered from internal defects. Therefore, the numerical analysis of the ultrasonic scattered field is absolutely necessary for the accurate and quantitative estimation of internal defects. Various modeling techniques now play an important role in nondestructive evaluation and have been employed to solve elastic wave scattering problems. Because the elastodynamic boundary element method is useful to analyze the scattered field in infinite media. it has been used to calculate the ultrasonic wavefields scattered from internal defects. In this study, a review of the boundary element method used for elastic wave scattering problems is presented and, as examples of the boundary element method, the scattered fields due to a circular cavity subjected to incident SH-wave and due to a surface-breaking crack subjected to incident Rayleigh wave are illustrated.

  • PDF

PAUT-based defect detection method for submarine pressure hulls

  • Jung, Min-jae;Park, Byeong-cheol;Bae, Jeong-hoon;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.153-169
    • /
    • 2018
  • A submarine has a pressure hull that can withstand high hydraulic pressure and therefore, requires the use of highly advanced shipbuilding technology. When producing a pressure hull, periodic inspection, repair, and maintenance are conducted to maintain its soundness. Of the maintenance methods, Non-Destructive Testing (NDT) is the most effective, because it does not damage the target but sustains its original form and function while inspecting internal and external defects. The NDT process to detect defects in the welded parts of the submarine is applied through Magnetic particle Testing (MT) to detect surface defects and Ultrasonic Testing (UT) and Radiography Testing (RT) to detect internal defects. In comparison with RT, UT encounters difficulties in distinguishing the types of defects, can yield different results depending on the skills of the inspector, and stores no inspection record. At the same time, the use of RT gives rise to issues related to worker safety due to radiation exposure. RT is also difficult to apply from the perspectives of the manufacturing of the submarine and economic feasibility. Therefore, in this study, the Phased Array Ultrasonic Testing (PAUT) method was applied to propose an inspection method that can address the above disadvantages by designing a probe to enhance the precision of detection of hull defects and the reliability of calculations of defect size.

A Study on the U-bending of Rectangular Hollow Tube by the Eccentric Extrusion and Bending Process (편심압출굽힘가공법에 의한 사각형 단면을 가진 중공 튜브제품의 U형굽힘가공에 관한 연구)

  • Kim, Jin-Hoon;Jin, In-Tai
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.496-504
    • /
    • 1998
  • The eccentric extrusion and bending process for the forming of the curved rectangular hollow tube is newly developed. Generally the bending process of hollow tube is the secondary process followed by the extrusion process of the hollow tube from the round billet. So many defects such as wrinkling and the difference of wall thickness can be happened during the secondary bending process. In order to avoid the defects the new process named as "the eccentric extrusion and bending process" is suggested and applied to the U-bending of rectangular hollow tube. In this paper the kinematically admissible velocity field between the dies surface and the internal plug boundary surface s developed for the curving velocity. By the using of this curving velocity field the curvature of extruded products can be calculated with the parameters such as eccentricity dies length friction constant aspect ratio.

  • PDF

Development of Rheology Forming Technology of Wear Resistance Al-Si Materials (I);Filling Behavior and Defect Evaluation (내마모계 Al-Si 재료의 레오로지 성형기술 개발 (I);충진거동 및 결함분석)

  • Jung, Hong-Kyu;Kang, Sung-Soo;Moon, Young-Hoon;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.368-376
    • /
    • 2000
  • Rheology forming technology has been accepted as a new method for fabricating near net shaped products with lightweight aluminum alloys. The rheology forming process consists of reheating process of billet, billet handling, filling into the die cavity and solidification of rheology formed part. The rheology forming experiments are performed with two different die temperatures ($T_d$ = $200^{\circ}C$, $300^{\circ}C$) and orifice gate type. The filling behavior and various defects of Al-Si materials with wear resistance (A357, A390 and ALTHIX 86S) fabricated in rheology forming process are evaluated in terms of alloying elements and surface non-uniformity. Finally, the methods to obtain the rheology formed products with high quality are described by solutions for avoiding the surface and internal defects.

  • PDF

Rail Inspection Using Noncontact Laser Ultrasonics

  • Kim, Nak-Hyeon;Sohn, Hoon;Han, Soon-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.696-702
    • /
    • 2012
  • In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd-Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real-time rail inspection from a high-speed train are discussed.

Development of New Low Frequency ECT Sensor to Detect Inner Defects(I) - Characteristic of Loss of Induced Electromotive Force - (내부결함 검출 가능한 저주파 ECT 센서개발(I) - 전자기 유도기전력 손실량의 특성-)

  • Park, Jeong-Ung;Jang, Mun-Seok;Gim, Guk-Ju;Kim, Beom-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.57-62
    • /
    • 2015
  • Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing(ECT) is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. The New ECT sensor which can detect inner defects was developed regardless the condition of surface. This sensor is verified to do experiment which measure the loss of induced electromotive force. The loss of induced electromotive force was measured in 5.4% and this low frequency ECT device can detect internal defects at depth 20 mm.