• Title/Summary/Keyword: Surface activation

Search Result 1,420, Processing Time 0.027 seconds

The Effects of Coordinative Locomotor Training Program for Life-Care Promotion on Balance of Obese Elderly Women (라이프케어 증진을 위한 협응적 이동훈련 프로그램이 비만 여성노인의 균형에 미치는 영향)

  • Lee, Dong-Ryul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • The purpose of this study was to examine the effects of coordinative locomotor training (CLT) program on the balance for the promotion of life care of elderly obese women. Ten participants of elderly obese women who were able to walk independently without surgery experience of lumbar, hip or knee joint within the past year were recruited and under went the pretest, CLT (20 sessions), followed by the post-test. The test included BMI test using In-body, joint kinematics using myoVIDEO, muscle activation using surface EMG test (erector spinae (ER), external oblique abdominalis (EO), quadriceps femoris (Quad), hamstring muscle (Ham)) and balance tests including dynamic balance test using forced treadmill, Berg balance scale (BBS) and timed up go (TUG). The CLT program was conducted 60 minutes a day, 5 days a week, over 4 weeks period. As a result of this study, The the trunk and hip joints kinematics during the stance and swing phases of gait were a statistical significance levels were set at p <0.05. The ER and EO muscle activation were significantly improved after intervention (p <0.05). The length of gait line and single support line of change of center of pressure (COP) were significantly increased after intervention (p <0.05). The BBS and TUG were also significantly enhanced after intervention (p <0.05). The results of this study showed that CLT program for the improvement of life care had significant effects on improving postural instability, muscle weakness, reduced balance ability and falling risk of obese elderly women. Therefore, it is recommended to apply CLT program to improve life-care through improving balance ability and preventing fall of obese elderly women.

Comparison of Kinematics and Myoelectrical Activity during Deadlift, with and without Variable Banded Resistance, in Healthy, Trained Athletes

  • Everett B. Lohman;Mansoor Alameri;Fulden Cakir;Chih Chieh Chia;Maxine Shih;Owee Mulay;Kezia Marceline;Simran Jaisinghani;Gurinder Bains;Michael DeLeon;Noha Daher
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.1
    • /
    • pp.53-70
    • /
    • 2024
  • Background: The conventional deadlift is a popular exercise for enhancing trunk, core, and lower extremity strength. However, its use in sports medicine is constrained by concerns of lumbar injuries, despite evidence supporting its safety and rehabilitative benefits. To optimize muscle activation using resistive bands in variable resistance therapy, we explored their feasibility in the deadlift. Design: Comparative experimental design Methods: Surface electromyography recorded muscle activity in the trunk and lower extremities during lifting, with normalization to the isometric Floor Lift using Maximal Voluntary Contraction. Kinematics were measured using inclinometer sensors to track hip and trunk sagittal plane angles. To prevent fatigue, each subject only used one of the three pairs of bands employed in the study. Results: Our study involved 45 healthy subjects (mean age: 30.4 ± 6.3 years) with similar baseline characteristics, except for years of lifting and strength-to-years-of-lifting ratio. Various resistance band groups exhibited significantly higher muscle activity than conventional deadlifts during different phases. The minimal resistance band group had notably higher muscle activity in the trunk, core, and lower extremity muscles, particularly in the end phase. The moderate resistance band group showed increased muscle activity in the mid-and end-phases. The maximum resistance band group demonstrated greater muscle activity in specific muscles during the early phase and overall higher activity in all trunk and lower extremity muscles in the mid and end phases of the deadlift (p<0.05). Conclusion: Our findings provide valuable insights into muscle activation with various resistance bands during deadlift exercise in clinical and gym settings. There appears to be a dose-response relationship between increased resistance bandwidth, external load, myoelectric activation, and range.

A PHOTOELASTIC STUDY ON THE STRESS DISTRIBUTION OF THE UPPER ANTERIOR TEETH WHEN RETRACT WITH HIGH PULL J-HOOK HEADGEAR (상악전치의 후방견인시 J-hook headgear의 사용이 응력분포변화에 미치는 영향에 대한 광탄성학적 연구)

  • Lee, You-Jin;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.697-709
    • /
    • 1997
  • This study was designed to investigate the stress intensity and distribution produced by 1mm activation of retraction archwire with $0^{\circ},\;7^{\circ},\;14^{\circ}$ torque and application of high polk J-hook headgear during retraction of four maxillary incisors using the photoelastic stress analysis. The photoelastic model was made with a PL-3 type epoxy resin which was substituted by alveolar bone portion. Each retraction archwire was fabricated from .020' X .025' stainless steel wire which had vertical loops in 7mm height and hooks for high pull J-hook headgear between central and lateral incisors. The high pull J-hook headgear was applied 35 degree backward and upward to occlusal plane with 200gm pet each side The findings of this study were as follows: 1. In case of $0^{\circ}$ torque, the stress was distributed from cervical 1/8 to apex of roots of central and lateral incisors which were the forms of arc mode. When the high pull J-hook headgear was applied, the stress distributed by arc mode was presented from cervical 1/2 to apex of roots of central and lateral incisors. And the stress distributed by following the root surface was presented from alveolar crest to cervical 1/2 of roots of central and lateral incisors. The stress between apecies of central and Lateral incisors was presented also. 2. In case of $7^{\circ}$ torque, the stress distributed by arc mode was presented from cervical 1/2 to apex of roots of central and lateral incisors. And the stress distributed by following the root surface was presented from alveolar crest to cervical 1/2 of roots of central and lateral incisors. When the high pull J-hook headgear was applied, the stress distributed by following the root surface was presented mote apically than without headgear. The stress between apecies of central and lateral incisors was presented also. 3. In case of $14^{\circ}$ torque, the stress distributed by following the root surface was Presented from alveolar crest to apex of roots of central and lateral incisors. When the high pull J-hook headgear was applied, the stress distributed by following the root surface was presented stronger than without headgear The stress between apecies of central and lateral incisors was presented also.

  • PDF

Photoelastic evaluation of Maxillary Posterior Crossbite Appliance (Maxillary Posterior Crossbite Appliance의 적용시 응력 분포에 관한 광탄성법적 연구)

  • Jang, Sung-Ho;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.549-558
    • /
    • 2001
  • This study was undertaken to demonstrate the forces in the maxillary alveolar bone generated by the activation of the maxillary posterior crossbite appliance In the treatment of posterior buccal crossbite caused by buccal ectopic eruption of the maxillary second molar. A photoelastic model was fabricated using a Photoelastic material (PL-3) to simulate alveolar bone and ivory-colored resin teeth. The model was observed throughout the anterior and posterior view in a circular polariscope and recorded photographically before and after activation of the maxillary posterior crossbite appliance. The following conclusions were reached from this investigation : 1. When the traction force was applied on the palatal surface of the second molar, stresses were concentrated at the buccal and palatal root apices and alveolar crest area. The axis of rotation of palatal root was at the root apex and that of the buccal root was at the root li4 area. In this result, palatal tipping and rotating force were generated. 2. When the traction force was applied on the buccal surface of the second molar, more stresses than loading on the palatal surface were observed in the palatal and buccal root apices. Furthermore, the heavier stresses creating an intrusive force and controlled tipping force were recorded below the buccal and palatal root apices below the palatal root surface. In addition, the axis of rotation of palatal root disappeared whereas the rotation axis of the buccal root moved to the root apex from the apical 1/4 area. 3. When the traction force was simultaneously applied on the maxillary right and left second molars, the stress intensity around the maxillary first molar root area was greater than the stress generated by the only buccal traction of the maxillary right or left second molar. As in above mentioned results, we should realize that force application on the palatal surface of second molars with the maxillary posterior crossbite appliance Produced rotation of the second molar and palatal traction, which nay cause occlusal Interference. That is to say, we have to escape the rotation and uncontrolled tipping creating occlusal interference when correcting buccal posterior crossbite. For this purpose, we recommend buccal traction rather than palatal traction force on the second molar.

  • PDF

Photoelastic evaluation of Mandibula Posterior Crossbite Appliance (Mandibular Posterior Crossbite Appliance의 적용시 응력 분포에 관한 광탄성법적 연구)

  • Jung, Won-Jung;Jang, Sung-Ho;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.559-566
    • /
    • 2001
  • This study was undertaken to demonstrate the forces in the mandibular alveolar bone generated by activation of the mandibular posterior crossbite appliance in the treatment of buccal crossbite caused by lingual eruption of mandibular second molar. A three-dimensional photoelastic model was fabricated using a photoelastic material (PL-3) to simulate alveolar bone. We observed the model from the anterior to the posterior view in a circular polariscope and recorded photogtaphically before and after activation of the mandibular posterior crossbite appliance. The following results were obtained : 1. When the traction force was applied on the buccal surface of the mandibular second molar, stress was concentrated at the lingual alveolar crest and root apex area. The axis of rotation also was at the middle third of the buccal toot surface and the root apex, so that uncontrolled tipping and a buccal traction force for the mandibular second molar were developed. 2. When the traction force was applied on the lingual surface of the mandibular second molar more stress was observed as opposed to those situations in which the force application was on the buccal surface. In addition, stress intensity was increased below the loot areas and the axis of rotation of the mandibular second molar was lost. In result, controlled tipping and intrusive tooth movements were developed. 3. When the traction forte was applied on either buccal or lingual surface of the second molar, the color patterns of the anchorage unit were similar to the initial color pattern of that before the force application. So we can use the lingual arch for effective anchorage in correcting the posterior buccal crossbite. As in above mentioned results, we must avoid the rotation and uncontrolled tipping, creating occlusal interference of the malpositioned mandibular second molar when correcting posterior buccal crossbite. For this purpose, we recommend the lingual traction force on the second molar as opposed to the buccal traction.

  • PDF

The Effect of Initial pH and Dose of $TiO_2$ on Chloroform Removal in Photocatalytic Process using Compound Parabolic Concentrator Reactor System (CPCs를 이용한 $TiO_2$ 광촉매반응공정에서 초기 pH와 촉매농도가 클로로포름 분해에 미치는 영향)

  • Cho, Sang-Hyun;Cui, Mingcan;Nam, Sang-Geon;Jung, Hee-Suk;Khim, Jee-Hyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1147-1153
    • /
    • 2010
  • To evaluate the solar photocatalytic degradation efficiency of chloroform in a real solar-light driven compound parabolic concentrators (CPCs) system, $TiO_2$ was irradiated with a metalhalide lamp (1000 W), which has a similar wavelength to sunlight. The results were applied to a pilot scale reactor system by converting the data to a standardized illumination time. In addition, the effects of initial pH and the $TiO_2$ dose on the photocatalytic degradation of chloroform were investigated. The results were compared with the specific surface area (S.S.A) and particle size of $TiO_2$, which changed according to the pH, to determine the relationship between the S.S.A, particle size and the photocatalytic degradation of chloroform. The experiment was carried out at pH 4~7 using 0.1, 0.2, 0.4 g/L of $TiO_2$. The particle size and specific surface area of $TiO_2$ were measured. There was no significant difference between the variables. However, pH affects the particle size distribution and specific surface area of $TiO_2$. Inaddition, the activation of a photocatalyst did not show a linear relationship with the specific surface area of $TiO_2$ in the photocatalytic degradation of chloroform.

Synthesization and Characterization of Pitch-based Activated Carbon Fiber for Indoor Radon Removal (실내 라돈가스 제거를 위한 Pitch계 활성탄소섬유 제조 및 특성연구)

  • Gwak, Dae-Cheol;Choi, Sang-Sun;Lee, Joon-Huyk;Lee, Soon-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.207-218
    • /
    • 2017
  • In this study, pitch-based activated carbon fibers (ACFs) were modified with pyrolysis fuel oil (PFO). Carbonized ACF samples were activated at $850^{\circ}C$, $880^{\circ}C$ and $900^{\circ}C$. A scanning electron microscope (SEM) and a BET surface area apparatus were employed to evaluate the indoor radon removal of each sample. Among three samples, the BET surface area and micropore area of ACF880 recorded the highest value with $1,420m^2{\cdot}g^{-1}$ and $1,270m^2{\cdot}g^{-1}$. Moreover, ACF880 had the lowest external surface area and BJH adsorption cumulative surface area of pores with $151m^2{\cdot}g^{-1}$ and $35.5m^2{\cdot}g^{-1}$. This indicates that satisfactory surface area depends on the appropriate temperature. With the above scope, ACF880 also achieved the highest radon absorption rate and speed in comparison to other samples. Therefore, we suggest that the optimum activation temperature for PFO containing ACFs is $880^{\circ}C$ for effective indoor radon adsorption.

Characteristics of the Tactile Brainwave on the Surface of Interior Finishing Materials - Focusing on the measurement of 'α-wave against β wave' - (실내마감재 표면에 감각하는 촉각적 뇌파특성 - '베타파에 대한 알파파' 측정 중심으로 -)

  • Yeo, Mi;Lee, Chang No
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2016
  • This study aimed to understand the importance of applying finishing materials into interior space, and to add meaning to the creation of functional space, associated interior finishing materials with brain science. To achieve this purpose, brainwave(EEG) experiment was conducted. The brainwave appearing when sensing the surface of interior finishing materials with hands was measured. The locations of the electrode were FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, CZ, FZ, and PZ and in addition to these, AFZ was added. Eight(8) kinds of finishing materials: metallic material, film paper, lumbar, stone, glass, silk wallpaper, fabric, and paint were used to measure '${\alpha}$-wave against ${\beta}$ wave.' As a result, it was found that the most activated finishing material in term of relaxation was film paper, followed by metallic, glass, paint, fabric, stone, lumbar, and silk wallpaper. To explain in light of this, (1) '${\alpha}$-wave against ${\beta}$ wave' was the most activated at ch1-FP1 and ch2-FP2, and at ch17-AFZ and ch19-FZ, which indicated that metopic-prefrontal lobe showed the highest activation in relaxation. Film paper, among the finishing materials, showed the highest increase in relaxation. (2) In general, '${\alpha}$-wave against ${\beta}$ wave' relaxation was inhibited at ch13-T3 and ch14-T4, and at ch15-T5 and ch16-T6 and the arousal in the temporal lobe was prominent. Silk wallpaper, among the finishing materials, showed the highest arounsal effect. As a result of measuring the superficial touch on the silk wallpaper, which was regarded as the most rough material among the eight finishing materials, the arousal effect of ${\alpha}$-wave against ${\beta}$-wave, among the brainwave characteristics, was found to be the highest. (3) to judge from the scope of this experiment regarding the tactile sensation over the finishing materials, it is considered that the brainwave reaction sometimes appeared contrastive depending on whether the surface was smooth or rough and there also appeared a difference in relaxation and arousal reaction of the brainwave depending on whether the surface was hot or cold, but the sensation on the surface texture was often evaluated differently depending on who you were. For this reason, this study has some limitations.

Effect of Pre-oxidation of Pitch by H2O2 on Porosity of Activated Carbons (과산화수소에 의한 산화가 핏치계 활성탄소의 기공성질에 미치는 영향)

  • Kim, Young-Ha;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.183-187
    • /
    • 2010
  • Activated carbons (ACs) have been prepared from pitch by the combination of a chemical oxidation with different $H_2O_2$ concentrations i.e., 5, 15, and 25 wt% and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The influence of $H_2O_2$ solution on the microporous properties of the pitch and the final activated carbons were invested using XRD, FT-IR, XPS, $N_2$-adsorption, and SEM. XRD indicated that the value of interplanar distance $d_{002}$ increased by chemical oxidation. FT-IR and XPS results showed that the chemical oxidation promoted the formation of surface oxygen functionalities. Also, the specific surface area of the resulting ACs was increased with increasing the concentration of $H_2O_2$ chemical oxidation and showed a maximum value of $2111m^2/g$ at 25 wt% $H_2O_2$ concentration.

A novel Fabry-Perot fiber optic temperature sensor for early age hydration heat study in Portland cement concrete

  • Zou, Xiaotian;Chao, Alice;Wu, Nan;Tian, Ye;Yu, Tzu-Yang;Wang, Xingwei
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • Concrete is known as a heterogeneous product which is composed of complex chemical composition and reaction. The development of concrete thermal effect during early age is critical on its future structural health and long term durability. When cement is mixed with water, the exothermic chemical reaction generates hydration heat, which raises the temperature within the concrete. Consequently, cracking may occur if the concrete temperature rises too high or if there is a large temperature difference between the interior and the exterior of concrete structures during early age hydration. This paper describes the contribution of novel Fabry-Perot (FP) fiber optic temperature sensors to investigate the thermal effects of concrete hydration process. Concrete specimens were manufactured under various water-to-cement (w/c) ratios from 0.40 to 0.60. During the first 24 hours of concreting, two FP fiber optic temperature sensors were inserted into concrete specimens with the protection of copper tubing to monitor the surface and core temperature change. The experimental results revealed effects of w/c ratios on surface and core temperature developments during early age hydration, as well as demonstrating that FP fiber optic sensors are capable of capturing temperature variation in the concrete with reliable performance. Temperature profiles are used for calculating the apparent activation energy ($E_a$) and the heat of hydration (H(t)) of concrete, which can help us to better understand cement hydration.