• Title/Summary/Keyword: Surface activation

Search Result 1,420, Processing Time 0.031 seconds

Effect of $NH_3$ on the Synthesis of Carbon Nanotubes Using Thermal Chemical Vapor Deposition

  • Cho, Hyun-Jin;Jang, In-Goo;Yoon, So-Jung;Hong, Jin-Pyo;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1219-1224
    • /
    • 2006
  • This study investigates the effect of $NH_3$ gas upon the growth of carbon nanotubes (CNTs) using thermal chemical vapor deposition. It is considered that the CNT synthesis occurs mainly through two steps, clustering of catalyst particles and subsequent growth of CNTs. We thus introduced $NH_3$ during either an annealing or growth step. When $NH_3$ was fed only during annealing, CNTs grew longer and more highly crystalline with diameters unchanged. An addition of $NH_3$ during growth, however, resulted in shorter CNTs with lower crystallinity while increased their diameters. Vertically aligned, highly populated CNT samples showed poor field emission characteristics, leading us to apply post-treatments onto the CNT surface. The CNTs were treated by adhesive tapes or etched back by dc plasma of $N_2$ to reduce the population density and the radius of curvatures of CNTs. We discuss the morphological changes of CNTs and their field emission properties upon surface treatments.

  • PDF

Silver Up-Take by Modified Pitches

  • Manocha, Satish M.;Patel, Mitesh
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 2002
  • The modification of coal-tar pitch has been carried out by heat treatment of pitch at different temperatures in the range ($300^{\circ}-400^{\circ}C$) for different times (2-5 hrs) in air and nitrogen. The pitch heat treated in air at lower temperature ($300^{\circ}C$) exhibit increase in softening point by $20^{\circ}C$ as compared to only $2^{\circ}C$ when treated in nitrogen. The changes are faster in air than in pure nitrogen. Pitch as such as well as after heat treatment were further treated with metal complexes by solution route. Silver intake has been found to increase from 0.5 to 0.8 % in nitrogen treated pitch while the uptake is found to decrease for pitches treated in air at $350^{\circ}C$ for 5 hrs. Experiments have also been made to incorporate silver into PAN and PAN-ox fibers through solution route. The metal intake has been found to be more in PAN-ox fibers than in PAN as such. Metal loaded carbon composites have been made by using metal loaded fibers as well as cokes. These composites as such exhibit higher surface oxygen complexes but decrease after activation.

  • PDF

Hydrogen Adsorption of PAN-based Porous Carbon Nanofibers using MgO as the Substrate

  • Jung, Min-Jung;Im, Ji-Sun;Jeong, Eui-Gyung;Jin, Hang-Kyo;Lee, Young-Seak
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.217-220
    • /
    • 2009
  • In this study, porous electrospun carbon fibers were prepared by electrospinning with PAN and $MgCl_2$, as a MgO precursor. MgO was selected as a substrate because of its chemical and thermal stability, no reaction with carbon, and ease of removal after carbonization by dissolving out in acidic solutions. $MgCl_2$ was mixed with polyacrylonitrile (PAN) solution as a precursor of MgO with various weight ratios of $MgCl_2$/PAN. The average diameter of porous electrospun carbon fibers increased from 1.3 to 3 ${\mu}m$, as the $MgCl_2$ to PAN weight ratio increased. During the stabilization step, $MgCl_2$ was hydrolyzed to MgOHCl by heat treatment. At elevated temperature of 823 K for carbonization step, MgOHCl was decomposed to MgO. Specific surface area and pore structure of prepared electrospun carbon fibers were decided by weight ratio of $MgCl_2$/PAN. The amount of hydrogen storage increased with increase of specific surface area and micropore volume of prepared electrospun carbon fibers.

Thermostable Adsorption Filter Immobilized with Super Activated Carbons by Quinoline Soluble Isotropic Pitch Binder (I-a Novel Adsorption Filter)

  • Park, Yeong-Tae;Im, Chul-Gyou;Kim, Yeong-Tae;Rhee, Bo-Sung
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.198-201
    • /
    • 2009
  • Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was $1,355\;m^2/g$, after KOH-activation it increased over $2,970\;m^2/g$ and was named as super activated carbon. In the preliminary research, this precursor was impregnated with $PdCl_2$(0.188 wt%) $KMnO_4$(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by $266\;m^2/g$ and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges < $5{\AA}{\sim}30\;{\AA}$ >.

Strain rate effects on soil-geosynthetic interaction in fine-grained soil

  • Safa, Maryam;Maleka, Amin;Arjomand, Mohammad-Ali;Khorami, Masoud;Shariati, Mahdi
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.533-542
    • /
    • 2019
  • Geosynthetic reinforced soil method in coarse-grained soils has been widely used in last decades. Two effective factors on soil-geosynthetic interaction are confining stresses and loading rate in clay. In terms of methodology, one pull-out test with four different strain rates, namely 0.75, 1.25, 1.75 and 2.25 mm/min, and three different normal stresses equal to 20, 50, and 80 kg have been performed on specimens with dimensions of 30×30×17 cm in the saturated, consolidated condition. The obtained results have demonstrated that activation of geosynthetic strength at contact surface depends on the applied stress. In addition, the increase in normal stress would increase the shear strength at contact surface between clay and geogrid. Moreover, it is concluded that the strain rate increment would increase the shear strength.

The Effect of Imidazole and 2-Methyl Imidazole on the Corrosion of Mild Steel in Phosphoric Acid Solution

  • Chandrasekara, V.;Kannan, K.;Natesan, M.
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.191-200
    • /
    • 2005
  • Two azole compounds viz., Imidazole (IM) and 2-Methylimidazole (2-MIM) were studied to investigate their inhibiting action on corrosion of mild steel in phosphoric acid ($H_3PO_4$) solution by mass loss and polarization techniques at 302K-333K. It has been found that the inhibition efficiency of the all inhibitors increased with increase in inhibitor concentration and decreases with increasing temperature and also with increase in acid concentrations. The inhibition efficiency of these compounds showed very good inhibition efficiency. At 0.5% of IM and 2-MIM in 1N and 5N phosphoric acid solution at 302K to 333K for 5 hours immersion period, the inhibition efficiency of 2-Methylimidazole found to be higher than Imidazole. The adsorption of these compounds on the mild steel surface from the acids has been found to obey Tempkin's adsorption isotherm. The values of activation energy ($E{\alpha}$) and free energy of adsorption (${\Delta}G{\alpha}ds$) were also calculated. The plots of log $W_f$ against time (days) at 302K give straight line which suggested that it obeys first order kinetics and also calculate the rate constant k and half life time $t_{1/2}$. Surface was analyzed by SEM and FITR spectroscopy.

Treatment Features of Ni Wastewater by using Coffee Grounds as the Adsorbent (커피 찌꺼기를 흡착제로 한 니켈 폐수 처리 특성)

  • Seo, Myung-Soon;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • A feasibility study has been conducted regarding the application of waste coffee grounds as an adsorbent for the treatment of nickel ion containing wastewater. The major variables which considered to influence the adsorbability of nickel ion were its initial concentration, reaction temperature, pH, and coexisting ion. The specific surface area of coffee grounds used in the experiment was found to be ca. $39.67m^2/g$, which suggesting its potential applicability as an adsorbent due to its relatively high surface area. In the experimental conditions, more than 90% of the initial amount of nickel ion was shown to adsorb within 15 minutes and equilibrium in adsorption was attained after 3 hours. The adsorption behavior of nickel ion was well explained by Freundlich model and kinetics study showed that the adsorption reaction was second-order. Adsorption was reduced with temperature and its change of enthalpy in standard state was estimated to be -807.05 kJ/mol. Arrhenius equation was employed for the calculation of the activation energy of adsorption and nickel ion was observed to adsorb on coffee grounds exoentropically based on thermodynamic estimations. As pH rose, the adsorption of nickel ion was diminished presumably due to the formation of cuboidal complex with hydroxide ion and the coexistence of cadmium ion was found to decrease the amount of nickel ion adsorption, which was proportional to the concentration of cadmium ion.

Bumpless Interconnect System for Fine-pitch Devices (Fine-pitch 소자 적용을 위한 bumpless 배선 시스템)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • The demand for fine-pitch devices is increasing due to an increase in I/O pin count, a reduction in power consumption, and a miniaturization of chip and package. In addition non-scalability of Cu pillar/Sn cap or Pb-free solder structure for fine-pitch interconnection leads to the development of bumpless interconnection system. Few bumpless interconnect systems such as BBUL technology, SAB technology, SAM technology, Cu-toCu thermocompression technology, and WOW's bumpless technology using an adhesive have been reviewed in this paper: The key requirements for Cu bumpless technology are the planarization, contamination-free surface, and surface activation.

Preparation of Activated Carbon Fiber Adsorbent for Enhancement of CO2 Capture Capacity (이산화탄소 포집능 향상을 위한 활성탄소 섬유 흡착제 제조)

  • Hwang, Su-Hyun;Park, Hyun-Soo;Kim, Dong-woo;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.538-547
    • /
    • 2015
  • Test activated carbon fiber (ACF) was prepared from Polyacrylonirile (PAN) through oxidation and chemical activation. Immersion of ACF precursors in the aqueous KOH solution enhanced the surface structure, as examined by BET pore analysis. Specific surface area increased greatly from less than $70m^2/g$ to $1226m^2/g$ with 4 M KOH, and total pore volume also rose up to $0.483cm^3/g$. In particular, it was found that micropores favorable for $CO_2$ molecule capture occupied more than 95%. Maximum $CO_2$ adsorption capacity was 3.59 mmol/g at 298 K. Low depth of pores in the present ACF may facilitate the molecules' desorption for its regeneration.

Structural Changes during Oxidation Process of Anisotopic Mesophase Carbon Fibers(II)-Surface Texture Observation by Scanning Electron Microscopy (산화반응에 의한 이방성 메조페이스 탄소섬유의 구조 변화(II)-주사전자현미경을 이용한 표면구조 관찰)

  • Roh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.831-838
    • /
    • 2003
  • Anisotropic mesophase carbon fiber(AMCFs) was exposed to isothermal oxidation in air and $CO_2$atmosphere, and burn-off rates have measured by TGA. The microstructure changes of oxidized carbon fibers, were observed by SEM. It was observed that oxidation rate in the air is over 100 times faster than that in $CO_2$atmosphere. The activation energy obtained in air was about 43.4 Kcal/mole in the temperature range of $600∼800^{\circ}C$, and in $CO_2$was about 55.2 Kcal/mole in the temperature range of $950∼1200^{\circ}C$. Therefore, the oxidation reaction in both atmospheres was under chemical reaction regime in the above temperature ranges. It was shown that the oxidation of the AMCFs is initiated at the end of fibers at high temperature($1100^{\circ}C$) with developing the large pores, and the small pores are developed on the fiber surface at low temperature($900^{\circ}C$). In conclusion, the oxidation of the AMCFs is progressed through the imperfection.