• Title/Summary/Keyword: Surface activation

Search Result 1,417, Processing Time 0.035 seconds

Kinetics and Mechanism of the Oxidation of Sulfur Dioxide on Nickel Oxide-${\alpha}$-Ferric Oxide System (산화니켈-${\alpha}$ 형 산화철 상에서 이산화황의 산화 반응메카니즘)

  • Kyu Yong Lee;Yong Rok Kim;Sung Han Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.183-188
    • /
    • 1983
  • The catalytic oxidation of $SO_2$ has been investigated in the presence of vacuum-activated 10 mol % Ni-doped ${\alpha}-Fe_2O_3$ under various partial pressures of $SO_2\;and\;O_2$ at temperatures from 320 to $440{\circ}C$. Over the temperature range $320{\sim}440{\circ}C$, the activation energy is 13.8 $kcal{\cdot}mol^{-1}$. The oxidation rates have been correlated with 1.5 order kinetics; first order with respect to $SO_2$ and 0.5 order with respect to $O_2$. From the kinetic data and conductivity measurements, the adsorption, oxidation mechanism of $SO_2$ and the defect structure of vacuum-activated 10 mol % Ni-doped {\alpha}-Fe_2O_3$ are suggested. $O_2\;and\;SO_2$ appear to be adsorbed essentially as ionic species. Two surface sites, probably an $O^{2-}$ lattice and an oxygen vacancy which is induced by Ni-doping, might be required to adsorb $SO_2\;and\;O_2$. The conductivity measurements and kinetic data indicate that the adsorption process of $SO_2\;{(SO_2+O^{2-}}_{(latt)}{\rightleftharpoons}{{SO_3}^-}_{(ads)}+e')$ is the rate-determining step.

  • PDF

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 6. Studies on Friction and Wear Properties of Carbon-Carbon Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구 : 6. 탄소/탄소 복합재료의 마찰 및 마모특성)

  • Park, Soo-Jin;Seo, Min-Kang;Lee, Jae-Rock
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.133-141
    • /
    • 2001
  • The friction and wear properties of carbon-carbon composites made with different weight percent of $MoSi_2$ as an oxidation inhibitor were investigated using a constant speed wear test apparatus in an oxidation environment. The results indicated the carbon-carbon composites undergoing an abrupt transition of friction coefficient, from low-friction behavior(${\mu}$=0.15~0.2) during normal wear regime to the high-friction behavior(${\mu}$=0.5~0.6) during dusting wear regime at the frictional temperature range of 150~180${\circ}C$. The existence of temperature-dependent friction and wear regimes implied that the performance of specimen made with carbon-carbon composites was markedly affected by the thermal properties of the composites. The carbon-carbon composites filled with MoSi2 exhibited two times lower coefficient of friction and wear rate in comparison with the composites without $MoSi_2$. Especially, the composites containing 4wt% $MoSi_2$ filler showed a significantly improved activation energy for wear due to the reduction of both the porosity and powdery debris film formation on sliding surface when compared to those without $MoSi_2$.

  • PDF

The Study of Toluene Combustion over Palladium-copper/USY Zeolite Catalyst (Pd-Cu/USY 제올라이트상에서 톨루엔 연소반응 연구)

  • Lee, Hye Young;Jin, Taihuan;Hwang, Young Kyu;Chang, Jong-San;Hwang, Jin-Soo;Lee, Chang-Gook;Baek, Shin;Ra, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.404-409
    • /
    • 2006
  • The catalytic combustion of toluene over Pd-Cu/USY zeolite has been examined by using FT-IR spectroscopy in a closed system under dry and humid conditions. The catalytic combustion of toluene (700 ppmv) in the temperature range of $80-220^{\circ}C$ has been investigated by using a fixed bed reactor. The Pd-Cu/USY catalyst showed the highest catalytic performance with respects to the PdO-CuO/USY and Pd/USY. Comparing to $PdO/Al_2O_3$ catalysts, the slight improvement in conversion was observed over PdO/USY catalysts under humid condition since USY zeolite is hydrophobic substrate and water give an additional oxygen source to zeolite surface like oxygen. The reduced catalysts showed more enhanced catalytic activity due to the reduced activation energy of combustion of toluene than oxidized catalysts such as PdO/USY and PdO-CuO/USY.

The Role of Protein Kinase C in the Cardiac Injury Induced by Skin Burn (피부화상으로 유도된 심근손상에서 Protein Kinase C의 역할)

  • Moon, Hye-Jung;Cho, Hyun-Gug;Park, Won-Hark
    • Applied Microscopy
    • /
    • v.33 no.4
    • /
    • pp.299-313
    • /
    • 2003
  • The aim of the present study was to assess the role of protein kinase C (PKC) in the development of cardiac injury following scald burn. Sprague-Dawley rats were induced a scald burn a 15% total body surface area. Phorbol 12-myristate 13-acetate (PMA, 2 mg/kg) and bisindolylmaleimide (BIS, 0.05 mg/kg) were immediately administered i.p. after burn injury. 5 h and 24 h later, heart was removed and examined biochemical assay, ultrastructural changes and stereological analysis. The activity of serum aspartate aminotransferase was significantly increased at 5h (p<0.01) and 5h+BIS (p<0.001) after burn compared with that of control. The activity of serum creatinine was significantly decreased in PMA-treated groups after burn compared with postburn 5 h. PMA caused a decrease in MPO activity and induced wavy fibers in cardiac myocytes at postburn 5 and 24h. BIS induced contraction band, separation of intercalated disk and abnormal mitochondria in cardiac myocytes at postburn 5 and 24h. In stereological analysis, treatment of rats with PMA increased volume density of myofibril and mitochondria compared with postburn 5 and 24h. Our data suggest that the activation of PKC in scald burned heart decreases inflammation and protects the myocardium.

Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport (NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취)

  • Jung, Kyung-Ho;Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radio iodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

Comparing the Muscle Strength of the Iliopsoas with the Muscle Activity of the Rectus Femoris according to Knee Flexion Angles in Supine and Sitting Positions (바로 누운 자세와 앉은 자세에서 무릎관절 굽힘 각도에 따른 엉덩허리근의 근력과 넙다리곧은근의 근활성도 비교)

  • Park, Heeyong;Weon, Jonghyuck;Jung, Doyoung;Cha, Hyungyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.33-41
    • /
    • 2019
  • Purpose : The muscle strength of iliopsoas (IL) was measured commonly in sitting position with hip and knee flexed 90°. However, there is no study to determine the muscle strength of IL in various test positions. Therefore, the purpose of this study was to compare the muscle strength of IL and muscle activity of rectus femoris (RF) according to test position and knee flexion angle. Methods : Twenty healthy subjects were participated for this study. The muscle strength of IL and muscle activity of RF were measured by hand-held dynamometer and surface electromyography during maximum voluntary isometric contraction (MVIC) of IL, respectively. The muscle strength of IL and muscle activity of RF was measured in 4 conditions as follows; 1) knee flexion angles 90 ° in supine, 2) 130 ° in supine position, 3) 90 ° in sitting, 4) 130 ° in sitting. Each condition were performed randomly by three repetitions. Results : The muscle strength of the IL was the main effect on the test position and knee flexion angle (p<.05), and the muscle activity of RF was the main effect only on the knee flexion angle (p<.05). There was also no interaction between the factors (p>.05). In supine position, the muscle strength of IL in knee flexion 130 ° was significantly less than that in knee flexion 90 ° (p<.0125). In knee flexion 90 °, the muscle strength of IL in supine position was significantly greater than that in sitting position (p<.0125). The muscle activity of RF in knee flexion 130 ° was significantly less than that in knee flexion 90 ° in supine and sitting positions (p<.0125). Conclusion : When the muscle strength of IL was measured in clinic and sports fields, the supine position with knee flexion 130 ° was recommended to prevent the muscle activation of RF and to maintain the trunk stability.

A Study on the $SO_2/CO_2/N_2$ Mixed Gas Separation Using Polyetherimide/PEBAX/PEG Composite Hollow Fiber Membrane (Polyetherimide/PEBAX/PEG 복합 중공사막을 이용한 $SO_2/CO_2/N_2$ 혼합기체 분리에 관한 연구)

  • Hyung, Chan-Heui;Park, Chun-Dong;Kim, Kee-Hong;Rhim, Ji-Won;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.404-414
    • /
    • 2012
  • In order to investigate $SO_2$ removal, PEI hollow fiber membranes were produced by a dry-wet phase inversion method. The membrane support layer on surface was coated with PEBAX1657$^{(R)}$ and PEG blending materials. Modules were prepared for the single gas permeation characteristics of composite membrane according to temperature and pressure. As a result, $SO_2$ permeance and $SO_2/N_2$ selectivity were 220~1220 GPU and 100~506 through operating condition, respectively. Moreover, $SO_2/CO_2/N_2$ mixture gas was used to compare the performance of separation properties according to temperature, pressure and retentate flow rate difference. $SO_2$ removal efficiency was increased with pressure and temperature.

Spatial Distributions of $^3H$ and $^{14}C$ in the Shielding Concrete of KRR-2 (연구로 2호기 수조 콘크리트의 $^3H$$^{14}C$ 공간분포)

  • Hong, Sang-Bum;Kim, Hee-Reyoung;Chung, Kun-Ho;Kang, Mun-Ja;Jeong, Gyeong-Hwan;Chung, Un-Soo;Park, Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.329-334
    • /
    • 2006
  • The depth distributions of total $^3H$ and $^{14}C$ activities were characterized for the activated shielding concrete from a decommissioning of KRR-2 using the commercially available tube furnace and a liquid scintillation counter. The correlation of measurement results between $^3H,\;^{14}C$ and gammer emitter was evaluated to apply for estimating radionuclide inventory of the concrete waste generated from decommissioning KRR-2. The detection limits for $^3H$ and $^{14}C$ are 0.048 and 0.028 Bq/g respectively. The specific activities of the $^3H$ and $^{14}C$ tend to decrease exponentially as the depth of the concrete becomes deeper from the surface. In addition, the $^3H$ and $^{14}C$ activities were in good correlation with the $^{60}CO$ activities analysed for the shielding concrete of KRR-2.

  • PDF

Interactions between Hydrodenitrogenation of Pyridine and Hydrodeoxygenation of m-Cresol over sulfided CoMo/γ-Al2O3 Catalyst (황화 CoMo/γ-Al2O3 촉매상에서 수첨탈질반응과 수첨탈산소 반응의 상호작용)

  • Kim, Hak-Soo;Park, Hea-Kyung;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.108-118
    • /
    • 1991
  • Interactions between pyridine hydrodenitrogenation (HDN) and m-cresol hydrodeoxygenation(HDO), and the kinetic analysis were studied over sulfided $CoMo/{\gamma}-Al_2O_3$ catalyst at the range of temperatures between 473 K and 723 K, the total pressures between $10{\times}10^5Pa$ and $50{\times}10^5Pa$, and the contact times between 0.0125 g-cat. hr/ml-feed and 0.03g-cat. hr/ml-feed. HDN of pyridine and HDO of m-cresol were inhibited by each other and the inhibition effect of HDO by pyridine is higher than that of HDN by m-cresol. But reactivity of m-cresol is higher than that of pyridine. The rate equations of pyridine and m-cresol were given to be ${\gamma}_{HDN}=k_{HDN}{\cdot}K_pC_p/(1+K_cC_c+K_pC_p)$ and ${\gamma}_{HDO}=k_{HDO}{\cdot}K_cC_c/(1+K_cC_c+K_pC_p)$ in terms of Langmuir-Hinshellwood-Hougen-Watson model. At each temperature, reaction rate constants and adsorption equilibrium constants were determined and activation energies of pyridine HDN and m-cresol HDO are 13.83kcal/mol, respectively and the heat of adsorption are -6.458 and -5.045kcal/mol, respectively.

  • PDF

Kinetics and Mechanism of the Selective Oxidation of Ethylene for Ethylene Oxide over Monolithic Silver Catalyst (모놀리스형 은촉매상에서 에틸렌선택산화반응의 속도론적 고찰)

  • Park, Rho-Bum;Kim, Sang-Chai;Sunwoo, Chang-Sin;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.165-174
    • /
    • 1991
  • The kinetics and the mechanism for the selective oxidation of ethylene on the supported monolithic silver catalyst were experimentally investigated in a fixed bed tubular reactor. The formation rates of ethylene oxide and carbon dioxide were measured at the atmospheric pressure with various combinations of partial pressures of ethylene and oxygen at temperature range of $225-300^{\circ}C$, conversion with 1.2-7.5 %, and then the mechanism of the selective oxidation of ethylene was verified. Their formation rates fitted with the Langmuir-Hinshelwood mechnism. The ethylene oxide and carbon dioxide are produced by reation of adsorbed ethylene with monoatomic oxygen adsorbed on the active sites of Ag-surface, and their formation rate equation are expressed as : $R_{EO}={\frac{k_1K_0{^{1/2}}K_EK_SP_{02}{^{3/2}}P_E}{(1+{\sqrt{K_0P_{02}}}+K_EP_E+K_PP_P)^2(1+{\sqrt{K_SP_{02}})^2}}$ $R_C={\frac{k_2K_0{^3}K_EK_S{^{7/2}}P_{02}{^{13/2}}P_E}{(1+{\sqrt{K_0P_{02}}}+K_EP_E+K_PP_P)^7(1+{\sqrt{K_SP_{02}})^7}}$ The activation energies of ethylene oxide and dioxide and carbon dioxide formations can be estimated to be 12.25 and 17.85 Kcal/mol, respectively.

  • PDF