• 제목/요약/키워드: Surface Vessel

검색결과 508건 처리시간 0.039초

정적연소실내에서의 플라즈마 제트 점화에 대한 연소기간중의 열손실산정 (Evaluation of Heat Loss by Means of Plasma Jet Ignition during Combustion Duration in the Constant Volume Vessel)

  • 김문헌;문경태;박정서;김홍성
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.96-103
    • /
    • 2003
  • In this paper, the heat loss to the constant volume vessel wall was investigated using instantaneous heat flux sensor, schlieren visualization, pressure rise curve. And the heat loss characteristics of plasma jet ignition were compared with conventional spark ignition. In case of plasma jet ignition, the flame kernel moves toward the center of combustion vessel in the initial period of combustion, and the flame surface spread out to the vessel wall. However, in case of conventional spark ignition, the flame surface contact with combustion vessel wall in the initial period of combustion. As a result, heat loss in the combustion duration for conventional spark ignition increase faster than that of plasma jet ignition. And the combustion enhancement rate of plasma jet ignition is higher than that of conventional spark ignition, and it was found that the heat loss rate is inversely proportional to the combustion enhancement rate.

M&S기법을 활용한 선박용 지향성 요동보상장치 성능 분석 (Performance Estimation for Shipboard Directional Pedestal by Using M&S Methodologies)

  • 이성균;고진용;한용수;김창환
    • 대한임베디드공학회논문지
    • /
    • 제13권6호
    • /
    • pp.297-303
    • /
    • 2018
  • Recently, the tasks assigned to surface ship are becoming diverse and important. In this trend, shipboard directional pedestals are widely used for surveillance and electronic warfare because ships are always under angular motion such as rolling, pitching and yawing. To estimate the performance of pedestal, the motion responses of vessel as well as mechanical characteristics of pedestal should be considered. In this study, both the motion responses of vessel which the pedestal will be mounted and the behavior of 3-axis pedestal are considered. Numerical analysis based on potential theory is used to obtained motion characteristics of vessel and then 6-DOF motions of vessel are simulated under operational condition. 1st-order time delay model and LQR control algorithm are used for modeling of pedestal drive model and control model, respectively. By using coordinate transform, the angular motions which the pedestal should compensate are calculated from the vessel's angular motion. Through these M&S methodologies, time history of pedestal behavior and maximum angular error of each pedestal axis are obtained. Overall M&S results show that 3-axis pedestal compensate the angular motion induced by vessel, efficiently.

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구 (A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD)

  • 석준;박종천;신명수;김성용
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

냉각면 성상이 빙부착에 미치는 영향 (Effect on the Adhesion of Ice Slurry by the Characteristic of Cooling Surface)

  • 승현;홍희기;강채동
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.183-190
    • /
    • 2005
  • In the process of ice-slurry making, ice adhesion on cooling wall or in narrow flow Path disturbs continuous ice formation. In this study, the effect on the ice adhesion to cooling surface by some freezing experiments was investigated, quantitatively. Three types of solutions were frozen in various coating vessels with stirring. In the experiment, the ice adhesion between cooling wall and Ice-slurry was evaluated by measuring stirring power. From the result, the stirring power of slurry mixture in PTFE-coating vessel was smaller than those in PE-coating, PFA-coating and bare SUS vessel. Especially, in EG H PG 1.S/ HD 1.5 mass$\%$ solution, the stirring power in the PE-coating vessel was smaller than that in the PFA-coating or SUS vessel.

굴곡된 협수로에서 자력조선에 의한 VLCC 의 조종특성에 관한 연구 (A Study on the Maneuvering Characteristics of a VLCC by Using of her Control Surface In a Curved Narrow Channel)

  • 윤점동;이춘기;허용범
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 춘계학술발표회 논문집
    • /
    • pp.101-110
    • /
    • 1998
  • The safe passing maneuver of a large vessel along the designed course through a narrow channel in the flow of strong current is greatly related with her maneuvering characteristics. This paper treats maneuvering characteristic of a large vessel changing her course with the use of her control surface in a narrow channel with strong current. In this paper, the author proposed mathematical models of calculating maneuvering motions of the very large LNG tanker altering course using her control surface and calculated passing tracks of the vessel through the channel and compared the calculated results with those of maneuvering simulations by a desk-top simulator. In general the motions with the calculated values and the simulated motions are well coincided with each other.

  • PDF

EXPERIMENTAL STUDY OF CRITICAL HEAT FLUX WITH ALUMINA-WATER NANOFLUIDS IN DOWNWARD-FACING CHANNELS FOR IN-VESSEL RETENTION APPLICATIONS

  • Dewitt, G.;Mckrell, T.;Buongiorno, J.;Hu, L.W.;Park, R.J.
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.335-346
    • /
    • 2013
  • The Critical Heat Flux (CHF) of water with dispersed alumina nanoparticles was measured for the geometry and flow conditions relevant to the In-Vessel Retention (IVR) situation which can occur during core melting sequences in certain advanced Light Water Reactors (LWRs). CHF measurements were conducted in a flow boiling loop featuring a test section designed to be thermal-hydraulically similar to the vessel/insulation gap in the Westinghouse AP1000 plant. The effects of orientation angle, pressure, mass flux, fluid type, boiling time, surface material, and surface state were investigated. Results for water-based nanofluids with alumina nanoparticles (0.001% by volume) on stainless steel surface indicate an average 70% CHF enhancement with a range of 17% to 108% depending on the specific flow conditions expected for IVR. Experiments also indicate that only about thirty minutes of boiling time (which drives nanoparticle deposition) are needed to obtain substantial CHF enhancement with nanofluids.

Enhancement of critical heat flux with additive-manufactured heat-transfer surface

  • Tatsuya Kano;Rintaro Ono;Masahiro Furuya
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2474-2479
    • /
    • 2024
  • In-Vessel Retention (IVR) is a key technology to retain the molten core in the reactor vessel during severe accidents of Pressurized-water reactors (PWRs). In order to gain the safety margin of IVR, it is crucial to enhance the critical heat flux (CHF) of the reactor vessel, which is submerged in a water pool. To enhance the CHF, we have designed and additive-manufactured porous grid plates with a 3-D printer for design flexibility. We measured the CHF for the porous grid plate on the boiling heat transfer surface and found that the CHF was enhanced by 50 % more than that of the bare surface. The CHF enhanced more with a narrower grid pitch and a lower grid height. The visual observation study revealed that the vapor film was formed at the bottom of the grid plate.

원자로 입출구 노즐 Alloy 82/182 이종금속 용접부 Weld Inlay 적용 후 초음파나노표면개질이 잔류응력 완화에 미치는 영향 (The effect of ultrasonic nano crystal surface modification for mitigation of the residual stress after weld inlay on the alloy 82/182 dissimilar metal welds of reactor vessel in/outlet nozzles)

  • 조홍석;박익근;정광운
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.40-46
    • /
    • 2015
  • This study was performed to investigate the effect of ultrasonic nano crystal surface modification (UNSM) on residual stress mitigation after Weld Inlay repair for butt dissimilar metal weld with Alloy 82/182 in reactor vessel In/Outlet nozzle. As-welded and Weld Inlay specimens were made in accordance with design standard of ASME Code Case N-766, and two planes of their weld specimens were peened by the optimum UNSM process condition. Peening characteristics for weld specimens after UNSM treatment were evaluated by surface roughness and Vickers hardness test. And, residual stress for weld specimens developed from before and after UNSM treatment was measured and evaluated by instrumented indentation technique. Consequently, it was revealed that the mitigation of residual stress in weld metal after Weld Inlay repair of reactor vessel In/Outlet nozzle could be possible through UNSM treatment.

내압이 작용하는 원통형용기에 대한 축방향 표면결함의 응력확대계수 계산방법 비교 (Comparison of Stress Intensity Factors for Longitudinal Semi-elliptical Surface Cracks in Cyclindrical Pressure Vessels)

  • 문호림;장창희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.622-627
    • /
    • 2001
  • The object of this paper is to compare stress intensity factor that be calculated by Raju-Newman's equation, finite element method, and Vessel INTegrity analysis inner flaws(VINTIN) program for longitudinal semi-elliptical cracks in cylindrical vessel under inner pressure. For this, three-dimensional finite-element analyses were performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The finite element meshes were designed for various crack shapes with t/R of 0.1. The crack depth to thickness ratio, a/t, was set to 0.2 and 0.5 matching Raju-Newman's equation. The crack depth to length ratio, a/c, was set to 0.2 and 0.4 in the same way and 0.33 was added to extend the range of crack configuration. Finite Element Analyses(FEA) were performed using the commercial FEA program ABAQUS. The results showed that the Raiu-Newman solutions were about 4-10% lower than FEA's using symmetric model of one-eighth of a vessel and close to those of FEA using symmetric model or one-forth or a vessel. Ana VINTIN solutions were nearly equal to those or Raju-Newman.

  • PDF