• Title/Summary/Keyword: Surface Urban Heat Island

Search Result 163, Processing Time 0.027 seconds

Analyzing the correlation between urban forestry and surface temperature using Landsat TM data

  • Jo, Myung-Hee;Kim, Sung-Jae;Lee, Kwang-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.905-907
    • /
    • 2003
  • In this study, the correlation between the heat island effect and the vegetation in Deagu Korea was performed through using Landsat TM data. the island effect, presents high temperature on air like island, is connected with correlation between the surface temperature and the temperature on the air. In this study, surface temperature was analyzed by detecting the change of urban forestry with remote sensing using the vegetation vitality statistics reference (ratio change of the Park greens in Daegu) the heat island effect not only brings the environment pollution but also brings serious problem such as the destruction of ecosystem to city as a whole. Jeff Luvall has studied to restrain the heat island effect by making urban forestry. Even though Daegu had been the serious high temperature urban area the current temperature of Daegu has been dropped. The correlation between the heat island effect and the vegetation index was analyzed by using satellite images.

  • PDF

Analysis of the Effects of Advection and Urban Fraction on Urban Heat Island Intensity using Unified Model for Seoul Metropolitan Area, Korea (통합모델을 활용한 이류와 도시비율이 서울 수도권 지역의 도시열섬강도에 미치는 영향 분석)

  • Hong, Seon-Ok;Kim, Do-Hyoung;Byon, Jae-Young;Park, HyangSuk;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.381-390
    • /
    • 2019
  • This study investigates the impacts of urban land-use fraction and temperature advection on the urban heat island intensity over the Seoul metropolitan area using the UM (Unified Model) with the MORUSES (Met Office Reading Urban Surface Exchange Scheme) during the heat wave over the region from 2 to 8, August 2016. Two simulations are performed with two different land-use type, the urban (urban simulation) and the urban surfaces replaced with grass (rural simulation), in order to calculate the urban heat island intensity defined as the 1.5-m temperature difference between the urban and the rural simulations. The land-use type for the urban simulation is obtained from Korea Ministry of Environment (2007) land-use data after it is converted into the types used in the UM. It is found that the urban heat island intensity over high urban-fraction regions in the metropolitan area is as large as 1℃ in daytime and 3.2℃ in nighttime, i.e., the effects of urban heat island is much larger for night than day. It is also found that the magnitude of urban heat island intensity increases linearly with urban land-use fraction. Spatially, the estimated the urban heat island intensities are systematically larger in the downwind regions of the metropolitan area than in the upwind area due to the effects of temperature advection. Results of this study indicate that urban surface fraction in the city area and temperature advection play a key role in determining the spatial distribution and magnitude of urban heat island intensity.

Identifying Urban Heat Island Effects due to Urban Land Use Change

  • Shin Dong-hoon;Lee Kyoo-seock
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.22-24
    • /
    • 2004
  • The land use has changed rapidly since 1960s in accordance with urbanization in Seoul Metropolitan Region. As a result, the urban microclimate has undergone changes as well. This study aims to recognize trend of the urban heat island change which is caused by land use change during urbanization in large city. Thermal data of Landsat TM images in 1987 and 1999 were for land surface temperature change detection in the study.

  • PDF

An Analysis on the Variation Trend of Urban Heat Island in Busan Area (2006-2010) (부산지역 도시 열섬의 변화경향 분석 (2006-2010))

  • Do, Woo-Gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.953-963
    • /
    • 2012
  • The annual variations of the urban heat island in Busan is investigated using surface temperature data measured at 3 automatic weather stations(AWSs) for the 5 years period, 2006 to 2010. Similar to previous studies, the intensity of the urban heat island is calculated using the temperature difference between downtown(Busanjin, Dongnae) and suburb(Gijang). The maximum hourly mean urban heat island are $1.4^{\circ}C$ at Busanjin site, 2300LST and $1.6^{\circ}C$ at Dongnae site, 2100LST. It occurs more often at Dongnae than Busanjin. Also the maximum hourly mean urban heat island appears in November at both sites. The urban heat island in Busan is stronger in the nighttime than in the daytime and decreases with increasing wind speed, but it is least developed in summer. Also it partly causes the increasement of nighttime PM10 concentration.

An empirical study on the Definition and Classification Methodology of Urban Heat Island Areas (도시열섬 지역에 대한 정의 및 구분 방법론에 관한 비교연구)

  • Kim, Kijung;An, Youngsoo
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.2
    • /
    • pp.47-59
    • /
    • 2017
  • The purpose of this study is to examine various definitions of urban heat island and to analyze the characteristics and differences of each methodology by applying each methodology for deriving the heat island region to Seoul. The definition of the heat island is divided into the atmospheric heat island and the surface heat island according to the utilized temperature data. The methodology for deriving the heat island area differs depending on the comparison method and the spatial extent of the analysis. As a result of analyzing each methodology for Seoul city, it was confirmed that the heat island area of Seoul is different according to temperature data. Also, it is confirmed that the distribution range of the heat island area is different according to the spatial range of analysis. This shows that even if the heat island area is analyzed for the same space and the same view point, the heat island area is derived differently according to each methodology. This study can be used as a basic study to solve the urban heat island problem in the future.

A Study on the Distribution Characteristic of Urban Surface Temperature and Urban Heat Island Effects (도시 지표면 온도분포 특성 및 열섬완화방안)

  • Do, Hu-Jo;Lee, Jung-Min;Ra, Jung-Hwa
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.611-622
    • /
    • 2007
  • The purpose of this research was to three-criteria landuse-pattern, developing density, NDVI which were related to the heat island and find the distribution characteristic of urban surface temperature and urban heat island effects. The results of this study were as follows. According to the analysis of surface temperatures, the first grade was the outside-city like a mountain and its temperature was less than $12.18^{\circ}C$. The fifth grade was the downtown industrial area and its temperature was more than $23.54^{\circ}C$. It means Daegu-Metropolitan-City has the serious heat-island effect. the results of landuse pattern analysis, in case of fifth and forth grade, city area was occupied over 90% with residential, commercial and industrial areas, but in case of third grade, openspace was occupied over 70%. The results of developing density analysis, the temperature had high correlation with building ratio, road ratio, vegetation ratio and etc. To plan for the decrease of heat island effect needed the extension of green space, decrease of paving, but there was a limit to get the objective method for grade classification because of lacking in the basic data, the research of criteria will be accomplished continuously.

Analysis of Thermal Heat Island Potential by Urbanization Using Landsat-8 Time-series Satellite Imagery (Landsat-8 시계열 위성영상을 활용한 도심지 확장에 따른 열섬포텐셜 분석)

  • Kim, Taeheon;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.305-316
    • /
    • 2018
  • As the urbanization ratio increases, the heat environment in cities is becoming more important due to the urban heat island. In this study, the heat island spatial analysis was calculated and conducted for analysis of urban thermal environment of Sejong city, which was launched in 2012 and has been developed rapidly. To analyze the ratio and change rate of urban area, a multi temporal land cover map (2013 to 2015 and 2017) of study area is generated based on Landsat-8 OLI/TIRS (Operational Land Imager / Thermal Infrared Sensor) satellite imagery. Then, we select an TIR (Thermal Infrared) band from the two TIR bands provided by the Landsat-8, which is used for calculating the heat island potential, through the accuracy evaluation of the brightness temperature and AWS (Automatic Weathering Station) data. Based on the selected band and surface emissivity, land surface temperature is calculated and the estimated heat island potential change is analyzed. As a result, the land surface temperature of the high ratio and change rate of urban area was significantly higher than the surrounding area around $3^{\circ}C$ to $4^{\circ}C$, and the heat island potential was also higher around $4^{\circ}C$ to $5^{\circ}C$. However, the heat island phenomenon was alleviated in urban areas with high rate of change that also show high green area ratio. Therefore, we demonstrated that dense urban area increases the possibility of inducing heat island, but it can mitigate the heat island through green areas.

Analysis of the Surface Urban Heat Island Changes according to Urbanization in Sejong City Using Landsat Imagery (Landsat영상을 이용한 토지피복 변화에 따른 행정중심복합도시의 표면 열섬현상 변화분석)

  • Lee, Kyungil;Lim, Chul-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.225-236
    • /
    • 2022
  • Urbanization due to population growth and regional development can cause various environmental problems, such as the urban heat island phenomenon. A planned city is considered an appropriate study site to analyze changes in urban climate caused by rapid urbanization in a short-term period. In this study, changes in land cover and surface heat island phenomenon were analyzed according to the development plan in Sejong City from 2013 to 2020 using Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite imagery. The surface temperature was calculated in consideration of the thermal infrared band value provided by the satellite image and the emissivity, and based on this the surface heat island effect intensity and Urban Thermal Field Variance Index (UTFVI) change analysis were performed. The level-2 land cover map provided by the Ministry of Environment was used to confirm the change in land cover as the development progressed and the difference in the surface heat island intensity by each land cover. As a result of the analysis, it was confirmed that the urbanized area increased by 15% and the vegetation decreased by more than 28%. Expansion and intensification of the heat island phenomenon due to urban development were observed, and it was confirmed that the ecological level of the area where the heat island phenomenon occurred was very low. Therefore, It can suggest the need for a policy to improve the residential environment according to the quantitative change of the thermal environment due to rapid urbanization.

Influences of Ice Microphysical Processes on Urban Heat Island-Induced Convection and Precipitation (얼음 미시물리 과정이 도시 열섬이 유도하는 대류와 강수에 미치는 영향)

  • Han, Ji-Young;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.195-205
    • /
    • 2007
  • The influences of ice microphysical processes on urban heat island-induced convection and precipitation are numerically investigated using a cloud-resolving model (ARPS). Both warm- and cold-cloud simulations show that the downwind upward motion forced by specified low-level heating, which is regarded as representing an urban heat island, initiates moist convection and results in downwind precipitation. The surface precipitation in the cold-cloud simulation is produced earlier than that in the warm-cloud simulation. The maximum updraft is stronger in the cold-cloud simulation than in the warm-cloud simulation due to the latent heat release by freezing and deposition. The outflow formed in the boundary layer is cooler and propagates faster in the cold-cloud simulation due mainly to the additional cooling by the melting of falling hail particles. The removal of the specified low-level heating after the onset of surface precipitation results in cooler and faster propagating outflow in both the warm- and cold-cloud simulations.

Mapping and Analyzing the Park Cooling Intensity in Mitigation of Urban Heat Island Effect in Lahore, Pakistan

  • Hanif, Aysha;Nasar-u-Minallah, Muhammad;Zia, Sahar;Ashraf, Iqra
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.127-137
    • /
    • 2022
  • Urban Heat Island (UHI) effect has been widely studied as a global concern of the 21st century. Heat generation from urban built-up structures and anthropogenic heat sources are the main factors to create UHIs. Unfortunately, both factors are expanding rapidly in Lahore and accelerating UHI effects. The effects of UHI are expanding with the expansion of impermeable surfaces towards urban green areas. Therefore, this study was arranged to analyze the role of urban cooling intensity in reducing urban heat island effects. For this purpose, 15 parks were selected to analyze their effects on the land surface temperature (LST) of Lahore. The study obtained two images of Landsat-8 based on seasons: the first of June-2018 for summer and the second of November-2018 for winter. The LST of the study area was calculated using the radiative transfer equation (RTE) method. The results show that the theme parks have the largest cooling effect while the linear parks have the lowest. The mean park LST and PCI of the samples are also positively correlated with the fractional vegetation cover (FVC) and normalized difference water index (NDWI). So, it is concluded that urban parks play a positive role in reducing and mitigating LST and UHI effects. Therefore, it is suggested that the increase of vegetation cover should be used to develop impervious surfaces and sustainable landscape planning.