• Title/Summary/Keyword: Surface Temperatures

Search Result 2,439, Processing Time 0.045 seconds

Electronic structure and catalytic reactivity of model oxide catalysts

  • Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.35-35
    • /
    • 2010
  • Understanding the mechanistic details of heterogeneous catalytic reactions will provide a way to tune the selectivity between various competing reaction channels. In this regard, catalytic decomposition of alcohols over the rutile $TiO_2$(110) surface as a model oxide catalyst has been studied to understand the reaction mechanism employing the temperature-programmed desorption (TPD) technique. The $TiO_2$(110) model catalyst is found to be active toward alcohol dehydration. We find that the active sites are bridge-bonded oxygen vacancies where RO-H heterolytically dissociates and binds to the vacancy to produce alkoxy (RO-) and hydroxyl (HO-). Two protons adsorbed onto the bridge-bonded oxygen atoms (-OH) readily react with each other to form a water molecule at ~500 K and desorb from the surface. The alkoxy (RO-) undergoes decomposition at higher temperatures into the corresponding alkene. Here, the overall desorption kinetics is limited by a first-order decomposition of intermediate alkoxy (RO-) species bound to the vacancy. We show that detailed analysis on the yield and the desorption temperatures as a function of the alkyl substituents provides valuable insights into the reaction mechanism. After the catalytic role of the oxygen vacancies has been established, we employed x-ray photoelectron spectroscopy to further study the surface electronic structure related to the catalytically active defective sites. The defect-related state in valence band has been related to the chemically reduced $Ti^{3+}$ defects near the surface region and are found to be closely related to the catalytic activity of the $TiO_2$(110) surface.

  • PDF

Microstructures and Mechanical Properties of Pure Titanium Casting Specimens with Mold Temperatures (순수 티타늄 주조체의 주형온도에 따른 미세조직 및 기계적 성질)

  • Cha, Sung-Soo;Nam, Sang-Yong;Song, Young-Ju
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.307-315
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the change of microstructures and mechanical properties of pure titanium casting specimens as a function of mold temperatures. Methods: The pure titanium castings were fabricated using the centrifugal vacuum casting method with different mold temperatures of $200{\sim}500^{\circ}C$. The resulting castings were characterized by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and vicker,s hardness tester. Results: In case of the mold temperatures over $400^{\circ}C$, the porosity, surface crack and large grain size were observed in resulting castings. Conclusion: In this work, The most suitable mold temperature in casting of pure titanium was $300^{\circ}C$.

Numerical Prediction of Aviation Fuel Temperatures in Unmanned Air Vehicles

  • Baek, Nak-Gon;Lim, Jin-Shik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.379-384
    • /
    • 2011
  • This paper performs numerical prediction of fuel temperature in the fuel tanks of unmanned air vehicles for both ground static non-operating and in flight transient conditions. The calculation is carried out using a modified Dufort-Frankel scheme. For this calculation, it is assumed that a non-operating vehicle on the ground is subjected to repeating daily cycles of ambient temperature with solar radiation and wind under 1%, with a 20% probability of hot day conditions. The energy conservation equation is used as the governing equation to calculate heat transfer between the fuel tank surface and the ambient environment. Results of the present analysis may be used as the estimated initial values of fuel temperatures in a vehicle's fuel tank for the purpose of analyzing transient fuel temperatures during various flight missions. This research also demonstrates that the fuel temperature of the front tank is higher than that of the rear tank, and that the difference between the two temperatures increases in the later phases of flight due to the consumption of fuel.

Modelling and numerical simulation of concrete structures subject to high temperatures

  • Ostermann, Lars;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.73-88
    • /
    • 2014
  • The paper deals with a model founded on the physical processes in concrete subject to high temperatures. The model is developed in the framework of continuum damage mechanics and the theory of porous media and is demonstrated on selected structures. The model comprises balance equations for heat transfer, mass transfer of water and vapour, for linear momentum and for reaction. The balance equations are completed by constitutive equations considering the special behaviour of concrete at high temperatures. Furthermore, the limitation and decline of admissible stresses is achieved by using a composed, temperature depending crack surface with a formulation for the damage evolution. Finally, the complete coupled model is applied to several structures and to different concrete in order to determine their influence on the high-temperature-behaviour.

Surface Segregation of Hydroniums and Chlorides in a Thick Ice Film at Higher Temperatures

  • Lee, Du Hyeong;Bang, Jaehyeock;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.263-263
    • /
    • 2013
  • This work examines the dynamic properties of ice surfaces in vacuum for the temperature range of 140~180 K, which extends over the onset temperatures for ice sublimation and the phase transition from amorphous to crystallization ice. In particular, the study focuses on the transport processes of excess protons and chloride ions in ice and their segregative behavior to the ice surface. These phenomena were studied by conducting experiments with a relatively thick (~100 BL) ice film constructed with a bottom $H_2O$ layer and an upper $D_2O$ layer, with excess hydronium and chloride ions trapped at the $H_2O$/$D_2O$ interface as they were generated by the ionization of hydrogen chloride. The migration of protons, chloride ions, and water molecules to the ice film surface and their H/D exchange reactions were measured as a function of temperature using the methods of low energy sputtering (LES) and Cs+ reactive ion scattering (RIS). Temperature programmed desorption (TPD) experiments monitored the desorption of water and hydrogen chloride from the surface. Our observations indicated that both hydronium and chloride ions migrated from the interfacial layer to segregate to the surface at high temperature. Hydrogen chloride gas desorbs via recombination reaction of hydronium and chloride ions floating on the surface. Surface segregation of these species is driven by thermodynamic potential gradient present near the ice surface, whereas in the bulk, their transport is facilitated by thermal diffusion process. The finding suggests that chlorine activation reactions of hydrogen chloride for polar stratospheric ice particles occur at the surface of ice within a depth of at most a few molecular layers, rather than in the bulk phase.

  • PDF

Spatial Distribution of Extremely Low Sea-Surface Temperature in the Global Ocean and Analysis of Data Visualization in Earth Science Textbooks (전구 대양의 극저 해수면온도 공간 분포와 지구과학교과서 데이터 시각화 분석)

  • Park, Kyung-Ae;Son, Yu-Mi
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.599-616
    • /
    • 2020
  • Sea-surface temperature (SST) is one of the most important oceanic variables for understanding air-sea interactions, heat flux variations, and oceanic circulation in the global ocean. Extremely low SSTs from 0℃ down to -2℃ should be more important than other normal temperatures because of their notable roles in inducing and regulating global climate and environmental changes. To understand the temporal and spatial variability of such extremely low SSTs in the global ocean, the long-term SST climatology was calculated using the daily SST database of satellites observed for the period from 1982 to 2018. In addition, the locations of regions with extremely low surface temperatures of less than 0℃ and monthly variations of isothermal lines of 0℃ were investigated using World Ocean Atlas (WOA) climatology based on in-situ oceanic measurements. As a result, extremely low temperatures occupied considerable areas in polar regions such as the Arctic Ocean and Antarctic Ocean, and marginal seas at high latitudes. Six earth science textbooks were analyzed to investigate how these extremely low temperatures were visualized. In most textbooks, illustrations of SSTs began not from extremely low temperatures below 0℃ but from a relatively high temperature of 0℃ or higher, which prevented students from understanding of concepts and roles of the low SSTs. As data visualization is one of the key elements of data literacy, illustrations of the textbooks should be improved to ensure that SST data are adequately visualized in the textbooks. This study emphasized that oceanic literacy and data literacy could be cultivated and strengthened simultaneously through visualizations of oceanic big data by using satellite SST data and oceanic in-situ measurements.

A Study on the Development of Dance Sportswear with Cool-touch Function (냉감 기능성 댄스스포츠 웨어 개발에 관한 연구)

  • Jun, Mi-Hwa;Jang, Jeong-Ah;Koo, Young-Seok
    • Fashion & Textile Research Journal
    • /
    • v.22 no.1
    • /
    • pp.66-75
    • /
    • 2020
  • This study helps develop cool-touch functional dance sportswear. We suggest a draft design for dance sportswear that chooses appropriate cool-touch functional materials based on an investigation of the changes of body surface temperature before and after exercise, the physical properties of cool-touch materials on the market, and the preference for cooling tools. The results are as follows. First, cool-touch functional sportswear products on the market utilize materials such as PCM, Delta fabric, high gauge fabric, and ice chips as well as incorporate functions such as UV block and eyelets for enhanced breathability. Polyester and polyurethane fibers are mainly used for cool-touch functional sportswear. Second, the neck area showed the highest surface temperatures (32.7℃ and 32.1℃) before and after exercise. Body surface temperatures measured after exercise were also lower than temperatures measured before exercise when wearing dance sportswear. Third, as for the physical properties of cool-touch materials, material 1 showed amaximum drying speed (130 min), material 3 the best moisture absorption speed (122 × 132 min), and material 4 the best thermal conductivity (0.013 7 w/m·K). Fourth, a draft design for a cool-touch functional dance sportswear was suggested, including a neckband made of removable soft PVC material on the neck area and applying material 4 in F1, B4, S2 and lower arm areas and material 1 in the armpit area. Deodorant tape was also attached to the armpit area for added comfort and antibacterial deodorant effect.

Computer Simulation of Temperature Parameter for Diamond Formation by using Hot- Filament Chemical Vapor Deposition (온도 매개 변수의 컴퓨터 시뮬레이션을 통한 HF-CVD를 이용한 다이아몬드 증착 거동 분석)

  • Song, Chang-Won;Lee, Yong-Hui;Choe, Su-Seok;Hwang, Nong-Mun;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.54-54
    • /
    • 2018
  • To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in the hot filament chemical vapor deposition (HFCVD) system. In this study the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16 and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software, ANSYS-FLUENT. To account for radiative heat-transfer in the HFCVD reactor, the discrete ordinate (DO) model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512 ~ 2802 K, and 1076 ~ 1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with experimental temperatures measured using a 2-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  • PDF

A Kinetic Study on the Growth of Nanocrystalline Diamond Particles to Thin Film on Silicon Substrate

  • Jung, Doo-Young;Kang, Chan-Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.131-136
    • /
    • 2011
  • A kinetic study has been made for the growth of nanocrystalline diamond (NCD) particles to a continuous thin film on silicon substrate in a microwave plasma chemical vapor deposition reactor. Parameters of deposition have been microwave power of 1.2 kW, the chamber pressure of 110 Torr, and the Ar/$CH_4$ ratio of 200/2 sccm. The deposition has been carried out at temperatures in the range of $400\sim700^{\circ}C$ for the times of 0.5~16 h. It has been revealed that a continuous diamond film evolves from the growth and coalescence of diamond crystallites (or particles), which have been heterogeneously nucleated at the previously scratched sites. The diamond particles grow following an $h^2$ = k't relationship, where h is the height of particles, k' is the particle growth rate constant, and t is the deposition time. The k' values at the different deposition temperatures satisfy an Arrhenius equation with the apparent activation energy of 4.37 kcal/mol or 0.19 eV/ atom. The rate limiting step should be the diffusion of carbon species over the Si substrate surface. The growth of diamond film thickness (H) shows an H = kt relationship with deposition time, t. The film growth rate constant, k, values at the different deposition temperatures show another Arrhenius-type expression with the apparent activation energy of 3.89 kcal/mol or 0.17 eV/atom. In this case, the rate limiting step might be the incorporation reaction of carbon species from the plasma on the film surface.