• 제목/요약/키워드: Surface Stability

Search Result 3,613, Processing Time 0.028 seconds

Interfacial and Thermal Characteristics of Natural Fiber Composites Reinforced with Henequen Surface-Treated with EBI

  • Pang Yansong;Han Seong Ok;Cho Donghwan;Drzal Lawrence T.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.88-91
    • /
    • 2004
  • In this study, a number of natural fiber henequen reinforced polymer matrix composites were successfully fabricated by means of a compression molding technique using chopped henequen fibers surface-treated with different electron beam irradiation (EBI) dosages, thermoplastic poly(butylene succinate), thermosetting unsaturated polyester and phenolic resins. Their interfacial and thermal characteristics were studied in terms of interfacial shear strength, fracture surface, dynamic mechanical properties, dimensional stability, and thermal stability using single fiber microbonding test, SEM, DMA, TMA, and TGA. The results show that their interfacial and thermal properties significantly depend on the intensity of EBl treatment on the natural fiber surface.

  • PDF

A Study on the Tribological Characteristics of Surface Modification (The 1st) (표면개질의 트라이볼로지 특성에 관한 연구(제1보))

  • Oh, Seong-Mo;Chae, Wang-Seok;Lee, Bong-Goo;Kim, Dong-Hyun;,
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.145-150
    • /
    • 1999
  • We have studied on the tribological characteristics of surface modification by Arc Ion Implantation(AIP) coating method. Coating materials were deposited by the Titanium carbide(TiC) and Titanium nitride(TiN). An experimental process was established to determine the tribological characteristics of friction and wear behaviour with the variation of applied load, temperature and the time by the Falex friction and wear test machine. The results, It can be improved that when the surface modification of hard coatings(TiC, TiN) was deposited steel, the tribological characteristics become better. It is argued that improved because of excellence of the anti-wear, the extreme pressure properties and the heat stability.

  • PDF

Study of the Photo-alignment Technique through the Surface Modification

  • Song, Dong-Mee;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.197-198
    • /
    • 2000
  • A surface-assisted photo-control of the liquid crystal (LC) alignment has been achieved by modifying the topmost surface of the polyimide film with photo-reactive molecules. Recently, photo-alignment technique using a thin film of poly(vinyl cinnamates) have been reported. However their commercial potentiality is limited by their low thermal stability. To enhance thermal stability, we synthesized the chalcone derivatives as the photo-reactive molecules and introduced the materials on the surface-modified polyimide film.. We identified that the photo-chemical reaction of the chalcone derivatives occur in few minutes with irradiation of UV light. The photo-alignment characteristics of the modified polyimide films treated by polarized UV light and their LC cells are investigated as a function of exposure dose.

  • PDF

Dynamic Surface Control Based Tracking Control for a Drone Equipped with a Manipulator (동적 표면 제어 기반의 매니퓰레이터 장착 드론의 추종 제어)

  • Lee, Keun-Uk;Choi, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1123-1130
    • /
    • 2017
  • This paper deals with the dynamic surface control based tracking control for a drone equipped with a 2-DOF manipulator. First, the dynamics of drone and 2-DOF manipulator are derived separately. And we obtain the combined model of a drone equipped with a manipulator considering the inertia and the reactive torque generated by a manipulator. Second, a dynamic surface control based attitude and altitude control method is presented. Also, multiple sliding mode control based position control method is presented. The system stability and convergence of tracking errors are proven using Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

Changes in the Moisture Stability of $CaS:Eu^{2+}$ Phosphors with Surface Coating Methods

  • Yoo, Sun-Hwa;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.907-911
    • /
    • 2009
  • To improve the moisture stability of the $CaS:Eu^{2+}$ red phosphor, surface coatings with silica nanoparticles were performed using five different methods, i.e., $P_1$, $P_2$, $P_3$, $P_4$, and $P_5$. The phosphors were coated with silica nanoparticles using a dip coating method ($P_1$) and sol-gel method ($P_2$). The phosphors were coated using a solution containing silica nanoparticles and poly(1-vinyl-2-pyrrolidone), PVP, $(P_3$). The phosphors were also coated with silica nanoparticles by reacting with the 1-vinyl-2-pyrrolidone (VP) monomer ($P_4$) or by reacting with mixtures containing VP and tetraethylorthosilicate ($P_5$). A decrease in the photoluminescence (PL) intensity was observed regardless of the coating methods. However, the moisture stability of the phosphors was enhanced by the coating when aged in a temperature-controlled humidity chamber. Among these methods, the $P_4$ (or $P_5$) method exhibited the greatest increase in moisture stability of the phosphors. The coated phosphors showed a relatively constant intensity with aging time, whereas the uncoated phosphor showed a decrease.

Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.235-245
    • /
    • 2019
  • This paper presents a novel methodology for face stability assessment of rock tunnels under water table by combining the kinematical approach of limit analysis and numerical simulation. The tunnels considered in this paper are excavated in fractured rock masses characterized by the Hoek-Brown failure criterion. In terms of natural rock deposition, a more convincing case of depth-dependent mi, GSI, D and ${\sigma}_c$ is taken into account by proposing the horizontally layered discretization technique, which enables us to generate the failure surface of tunnel face point by point. The vertical distance between any two adjacent points is fixed, which is beneficial to deal with stability problems involving depth-dependent rock parameters. The pore water pressure is numerically computed by means of 3D steady-state flow analyses. Accordingly, the pore water pressure for each discretized point on the failure surface is obtained by interpolation. The parametric analysis is performed to show the influence of depth-dependent parameters of $m_i$, GSI, D, ${\sigma}_c$ and the variation of water table elevation on tunnel face stability. Finally, several design charts for an undisturbed tunnel are presented for quick calculations of critical support pressures against face failure.

An Analysis of Low-level Stability in the Heavy Snowfall Event Observed in the Yeongdong Region (영동지역 대설 사례의 대기 하층 안정도 분석)

  • Lee, Jin-Hwa;Eun, Seung-Hee;Kim, Byung-Gon;Han, Sang-Ok
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.209-219
    • /
    • 2012
  • Extreme heavy snowfall episodes have been investigated in case of accumulated snowfall amount larger than 50 cm during the past ten years, in order to understand the association of low-level stability with heavy snowfall in the Yeongdong region. In general, the selected 4 events have similar synoptic setting such as the Siberian High extended to East Sea along with the Low passing by the southern Korean Peninsula, eventually inducing easterly in the Yeongdong region. Specifically moist-adiabatically neutral layer has been observed during the heavy snowfall period, which was easily identified using vertical profiles of equivalent potential temperature observed at Sokcho, whereas convective unstable layer has been formed over the East sea due to relatively warm sea surface temperature (SST) about $8{\sim}10^{\circ}C$ and lower temperature around 1~2 km above the surface, obtained from RDAPS. Difference of equivalent potential temperature between 850 hPa and surface as well as difference between air and sea temperatures altogether gradually increased before the snowfall period. Instability-induced moisture supply to the atmosphere from the East sea, being cooled and saturated by the upper cold surge, would make low-level ice cloud, and eventually move inland by the easterly flow. Heavy snowfall will be enhanced in association with low-level convergence by surface friction and upslope wind against Taebaek mountains. This study emphasizes the importance of low level stability in the Yeongdong region using the radiosonde sounding and RDAPS data, which should quantitatively be examined through numerical model as well as heat and moisture supply from the ocean.

Hardness and Dimensional Stability of Thermally Compressed Domestic Korean Pine (국내산 잣나무 열압밀화재의 경도와 치수안정성)

  • Hwang, Sung-Wook;Cho, Beom-Geun;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • We conducted a thermal compression of domestic Korean pinewood for a use in flooring. For the evaluation of flooring material, we measured dimensional stability and surface hardness of thermally compressed wood. It is possible to make high-specific gravity woods with a range of 0.82-0.92 after the thermal compression with 50% compression set. The surface hardness increased with an increase in the pressing temperature. The highest value of surface hardness was $23.6N/mm^2$, which was obtained from the thermal compressed wood with pressing temperature of $160^{\circ}C$ and 30 minutes of pressing time. However, the surface hardness of woods treated at high temperature of $180^{\circ}C$ or greater decreased. The recovery of thickness decreased with increasing the pressing temperature. For dimensional stability, compression temperature was more dominant than compression time.