• Title/Summary/Keyword: Surface Solar Insolation

Search Result 44, Processing Time 0.024 seconds

The retrieval of Surface Solar Insolation using SMAC code with GMS-5 satellite data

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.458-461
    • /
    • 2005
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. However, ground base measurement stations installed pyranometer are often sparsely distributed, especially over oceans. In this study, Surface Solar Insolation is estimated using the visible and infrared spin scan radiometer(VISSR) data on board Geostationary Meteorological Satellite (GMS)-S covering from March 2001 to December 2001 in clear and cloudy conditions. To retrieve atmospheric factor, such as, optical depth, the amount of ozone, H20, and aerosol, SMAC (Simplified Method for Atmospheric Correction) code, is adopted. The hourly Surface Solar Insolation is estimated with a spatial resolution of $5km\;\times\;5km$ grid. The daily Surface Solar Insolation is derived from the available hourly Surface solar irradiance, independently for every pixel. The pyranometer by the Korea Meteorological Agency (KMA) is used to validate the estimated Surface Solar Insolation with a spatial resolution of $3\;\times\;3Pixels.$

  • PDF

A REPRESENTATIVITY TEST OF THE SURFACE SOLAR INSOLATION THROUGH SATELLITE OBSERVATION

  • Yeom, Jong-Min;Park, Youn-Young;Kim, Young-Seup;Han, Kyung-Soo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.655-659
    • /
    • 2006
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a 5km ${\times}$ 5km spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with 3${\times}$3, 5${\times}$5, 7${\times}$7, 9${\times}$9, 10${\times}$10, 11${\times}$11, 13${\times}$13 pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.

  • PDF

A Representativity Test on the Pyranometer Measurement of Surface Solar Insolation Through Satellite Observation

  • Yeom, Jong-Min;Han, Kyung-Soo;Park, Youn-Young;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.389-396
    • /
    • 2006
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a $5\;km{\times}5\;km$ spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with $3{\times}3,\;5{\times}5,\;7{\times}7,\;9{\times}9,\;10{\times}10,\;11{\times}11,\;13{\times}pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.

Solar Insolation Effect on the Local Distribution of Lunar Hydroxyl

  • Kim, Suyeon;Yi, Yu;Hong, Ik-Seon;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • Moon mineralogy mapper ($M^3$)'s work proved that the moon is not completely dry but has some hydroxyl/water. $M^{3{\prime}}s$ data confirmed that the amount of hydroxyl on the lunar surface is inversely related to the measured signal brightness, suggesting the lunar surface is sensitive to temperature by solar insolation. We tested the effect of solar insolation on the local distribution of hydroxyl by using $M^3$ data, and we found that most craters had more hydroxyl in shade areas than in sunlit areas. This means that the local distribution of hydroxyl is absolutely influenced by the amount of sunshine. We investigated the factors affecting differences in hydroxyl; we found that the higher the latitude, the larger the difference during daytime. We also measured the pyroxene content and found that pyroxene affects the amount of hydroxyl, but it does not affect the difference in hydroxyl between sunlit and shaded areas. Therefore, we confirmed that solar insolation plays a significant role in the local distribution of hydroxyl, regardless of surface composition.

A Study on the Estimating Direct Normal Insolation Using Horizontal Global Insolation for Solar Thermal Generation System Installation in Korea (법선면 직달일사량 예측기법을 이용한 한반도에서의 태양열발전단지 건설을 위한 최적지 선정에 관한 연구)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.77-87
    • /
    • 2012
  • Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. For the validation, estimated direct normal Insolation is compared with observed direct normal Insolation at 16 sites over the Korean peninsular from January 1982 to December 2010. Estimated direct normal Insolation shows reliable results with average deviation of -5.4 to +5.9% from the measured values and the yearly averaged direct normal Insolation of Korean peninsula was turned out to be 2.93 $kW/m^2/day$.

Simulation of Radiative Property Effects on Radiant Cooling of Opaque Surface (비 투과면 복사 냉각에 대한 복사 물성의 영향 예측)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • The effects of surface radiative properties on the radiant cooling of opaque surfaces under clear sky condition are studied. Two types of surfaces, one gray and the other selective, are compared. For the nighttime cooling, black surface gives the lowest plate temperature and on the other hand the ideal selective surface gives the highest temperature. The reverse is true when there is an insolation. Equivalent radiative heat transfer coefficient of radiant cooling without convection is about $1{\sim}7\;W/m^2-K$ for the range of values studied. The surface with black within the $6{\sim}13\;{\mu}m$ band else zero emissivity could be regarded as a black surface for the nighttime radiant cooling purposes. However, lower band limit of $4\;{\mu}m$ is preferred to $6\;{\mu}m$ for small insolation situations.

Estimation of Insolation over the Oceans around Korean Peninsula Using Satellite Data

  • Park, Kyung-Won;Kim, Young-seup;Sang, Chung-Hyo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.227-230
    • /
    • 1999
  • Surface solar radiation over the sea is estimated using Visible and Infrared Spin Scan Radiometer data onbord Geostationary Meteorological Satellite(GMS) 5 for January, 1997 to December 1997 in clear and cloudy conditions. The hourly insolation is estimated with a spatial resolution of 5$\times$ 5 km grid. The island pyranometer belonging to the Japan Meteorological Agency is used for validation of the estimated insolation. It is shown that the estimated hourly insolation has RMSE(root mean square) error of 104 W/$m^2$. The variability of the hourly solar radiation was investigated on 3 areas over seas around Korean Peninsula. The solar radiation of East Sea is similar to Yellow Sea. The maximum value of solar radiation is on June of year. The maximum value in south sea is on August because weather is poor by low pressure and front in June

  • PDF

A Detailed Analysis of Solar Radiation Resources in Korea (국내 태양에너지 자원 정밀분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.63.1-63.1
    • /
    • 2010
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system and solar thermal power system, it is essential to utilize the solar radiation data as a application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 23 different stations over the South Korea from 1982 to 2009. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is $3.56kWh/m^2/day$.

  • PDF

Improvement of the Power Generation of Photovoltaic Generation System using Rotating Reflector (회전 반사판을 이용한 태양광발전장치의 발전량 향상)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.157-162
    • /
    • 2020
  • In the existing photovoltaic generation system, the system equipped with the reflecting plate is a method in which solar energy (insolation) is concentrated on the surface of the photovoltaic module. However, the solar energy (insolation) lost by being reflected back through the solar module is not considered. Although a method of increasing the amount of power generated by installing a reflector around the solar modules has been proposed, this affects the power generation degradation caused by the shading of other solar modules. Therefore, in order to improve this problem, in this paper, 1) without affecting the development of photovoltaic module according to the shade, 2) photovoltaic module using a reflector rotating the solar energy (insolation) lost by the solar module Study and suggest how to join again. Therefore, the loss of solar energy (insolation) can be minimized through the method of recycling the solar energy according to the countless reflection angle of the lost solar energy (insolation). As a result, it is possible to increase the amount of power generation of the photovoltaic generation system by maximizing the amount of power generation for the same solar radiation.

Variation of the Insolation by Cloud Cover over Pusan in Korea (釜山地方의 雲量에 따른 日射量의 變化)

  • Cho, Byoung-Gil;Lee, Bu-Yong;Moon, Sung-Euii
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.13-18
    • /
    • 1995
  • In order to examine the effect on the insolation of cloud cover, we analyzed the data of the insolation, cloud cover and surface air pressure in Pusan during the period of 1991. 10 - 1993.1. At first, we investigate the atmospheric transmissivity A(t) using the Beer's law at clear skies. The atmospheric transmissivity is characterized by cold season high and warn season low. From this atmospheric transmissivity, the empirical formula that shows the variation of the insolation due to the cloud cover is obtained. The result formula is I : l0 A(tn)·( 0.7-0.05×m ). 1 is the insolation that reaches the surface when cloud cover is m and to is solar constant. Although the result is some rough it seems meaningful that the estimation of insolation can be made only from the routine data.

  • PDF