• Title/Summary/Keyword: Surface Reaction

검색결과 4,247건 처리시간 0.036초

Methylchlorosilanes의 직접 생산 반응에서 반응기구 (Reaction Scheme on the Direct Synthesis of Methylchlorosilanes)

  • 김종팔;이광현
    • Korean Chemical Engineering Research
    • /
    • 제56권2호
    • /
    • pp.291-296
    • /
    • 2018
  • 구리 촉매를 이용하여 실리콘으로부터 기체상태의 methylchlorosilanes을 직접 생성하는 공정이 Rochow에 의해 제시되었고 이 후로 직접 생산 반응에 관하여 많은 연구가 진행되어 오고 있다. 직접 반응 촉매로서의 구리 외에 조촉매들을 첨가함으로서 반응의 활성을 증가시키고, 주 생산물인 DMDC 로의 선택도를 증가시키는 연구도 많이 보고되었다. 하지만 반응 기구에 있어서는 DMDC 의 생성을 설명하는 연구 외에 부산물로 함께 생성되는 여러 종류의 methylchlorosilanes 들의 생성과정을 설명하는 연구는 없는 실정이다. 그래서 본 연구에서는 실리콘 표면에 존재하는 것으로 보여지는 실리콘 활성점인 $=SlCl_2$$=Si(CH_3)Cl$의 존재를 제시하고 이 활성점 들에 메틸, 염소 및 수소가 첨가되어 methylchlorosilanes이 생성된다고 간주하였다. Methyl chloride ($CH_3Cl$)의 해리 흡착으로 인한 메틸-실리콘 결합의 생성과 해리 흡착한 후 표면에 존재하여 표면 이동을 하는 것으로 간주되는 Cl와 H을 이용하여 각 silanes 의 생성 경로를 제시하였다. 제시된 각 silanes 들의 생성 경로는 반응 결과 생성된 각 silanes의 종류뿐만 아니라 TPD 과정에서 생성되는 silanes 종류의 생성도 정확하게 설명해 주고 있다.

실리카 나노입자 표면에 결합된 아미노기와 Glycidyl Methacrylate의 반응에 관한 분광학적 연구 (Spectroscopic Studies on the Reaction between Amino Groups on Silica Nanoparticle Surface and Glycidyl Methacrylate)

  • 이상미;하기룡
    • 폴리머
    • /
    • 제37권6호
    • /
    • pp.777-783
    • /
    • 2013
  • 본 연구에서는 실리카 나노입자를 dipodal 형태의 bis[3-(trimethoxysilyl)propyl]amine(BTMA) 실란 커플링제로 실리카 표면을 개질한 후, glycidyl methacrylate(GMA)로 표면 처리를 하여 실리카에 결합된 BTMA의 N-H기와 GMA의 epoxide기의 개환 반응에 의하여 실리카 표면에 중합용 methacrylate기를 도입하는 연구를 수행하였다. 반응시간, 반응온도 및 투입하는 GMA의 농도 변화가 BTMA의 N-H기와 GMA의 epoxide기 사이의 반응에 미치는 영향을 Fourier transform infrared spectroscopy(FTIR), elemental analysis(EA) 및 고체상태 $^{13}C$ cross-polarization magic angle spinning(CP/MAS), nuclear magnetic resonance spectroscopy(NMR)법을 사용하여 분석하였다. BTMA로 개질된 실리카를 GMA로 처리하면 실리카 입자에 결합되어 있는 BTMA의 N-H기와 GMA의 epoxide기가 열리면서 상호 반응이 일어났으며, 실험한 조건에서는 반응시간, 반응온도 및 투입하는 GMA 농도가 증가할수록 실리카 표면에 도입되는 methacrylate기가 증가함을 확인하였다.

상압소결 $\beta$-SiC에 있어서 표면부에서의 액상집중과 미세구조의 변화 (Concentration of Liquid-phase in the Surface Region and Microstructural Change in Pressureless Sintered$\beta$-SiC)

  • 이종국;양권승;김환
    • 한국세라믹학회지
    • /
    • 제33권8호
    • /
    • pp.921-927
    • /
    • 1996
  • The liquid-phase concentration from the interior to the surface region and its influence on the microstructural changes were investigated in pressureless sintered $\beta$-SiC Surface reaction-layer was formed by reaction of packing powder and volatile components on the surface during sintering which was induced the concentration of liquid-phase in the surface regions. The microstructural changes between the surface region and the interior were appeared in sintered specimen which was resulted from the difference of liquid-phase content during sintering. Microstructural changes were observd with the depth of about 250${\mu}{\textrm}{m}$ from he surface. The grain size and aspect ratio of SiC in the interior are larger than those in the surface region and the rate of transforma-tion of $\beta$-to $\alpha$-SiC during sintering is higher in the interior than that in the surface region.

  • PDF

이금속성 형태 몰리브덴 촉매를 이용한 질소화합물의 반응속도 연구 (A Study on the Reaction Kinetics of Nitrogen Compounds over Bimetallic Molybdenum Catalysts)

  • 안범수
    • 한국응용과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.349-354
    • /
    • 2005
  • It is interesting to discover the reaction kinetics of the newly developed molybdenum containing catalysts. The dissociation/adsorption of nitrogen on molybdenum surface is known to be structure sensitive, which is similar to that of nitrogen on iron surface. The rates over molybdenum nitride catalysts are increased with the increase of total pressure. This tendency is the same as that for iron catalyst, but is quite different from that for ruthenium catalyst. The activation energies of the molybdenum nitride catalysts are almost on the same level, although the activity is changed by the addition of the second component. The reaction rate is expressed as a function of the concentration of reactants and products. The surface nature of $CO_3Mo_3N$ is drastically changed by the addition of alkali, changing the main adsorbed species from $NH_2$ to NH on the surface. The strength of $NH_x$ adsorption is found to be changed by alkali dopping.

다양한 온도에서 염소가스 반응에 의해 표면 개질된 SiC의 트라이볼로지 특성평가 (Estimation of Tribological Properties on Surface Modified SiC by Chlorine Gas Reaction at Various Temperatures)

  • 배흥택;정지훈;최현주;임대순
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.515-519
    • /
    • 2009
  • Carbon layers were fabricated on silicon carbide by chlorination reaction at temperatures between $1000^{\circ}C$ and $1500^{\circ}C$ with $Cl_2/H_2$ gas mixtures. The effect of reaction temperature on the micro-structures and tribological behavior of SiC derived carbon layer was investigated. Tribological tests were carried out ball-on-disk type wear tester. Carbon layers were characterized by X-ray diffractometer, Raman spectroscopy and surface profilometer. Both friction coefficients and wear rates were maintained low values at reaction temperature up to $1300^{\circ}C$ but increased suddenly above this temperature. Variation of surface roughness as a function of reaction temperature was dominant factor affecting tribological transition behavior of carbon layer derived from silicon carbide at high temperature.

Chloride ion removal effect for the ACF electrochemically treated with silver

  • Oh, Won-Chun;Park, Choung-Sung;Bae, Jang-Soon
    • 분석과학
    • /
    • 제19권4호
    • /
    • pp.316-322
    • /
    • 2006
  • The removal efficiencies of silver-ACFs were associated with their surface properties such as surface area, porosity, and the electro-chemical reaction time for the silver treatments. X-ray diffraction patterns of fibers electrochemically treated with silver display diffraction peaks for metallic silver and kinds of silver chloride complexes on the fiber surface after electrochemical adsorption. The results of SEM and EDX indicate that surface reaction motive of silver-ACF prepared by electrochemical reaction are depend on time function for the chloride ion removal efficiency. Finally, Cl ion adsorbed by the silver-ACFs from the ICP analysis seems to show an excellent removal effect.

연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of carbon-supported near-surface alloys (NSAs) for electrode reaction of fuel cell)

  • 박인수;성영은
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.64-69
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of polymer electrolyte membrane fuel cells [PEMFCs] for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the supporting of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an alloying process occurred during the successive reducing process. The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one [Johnson-Matthey] for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Electode reaction of Fuel cell)

  • 박인수;이국승;최백범;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.316-319
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an at toying process occurred during the successive reducing process The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface

  • Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.635-646
    • /
    • 2007
  • The reaction of gas-phase hydrogen atoms H with H atoms chemisorbed on a graphite surface has been studied by the classical dynamics. The graphite surface is composed of the surface and 10 inner layers at various gas and surface temperatures (Tg, Ts). Three chains in the surface layer and 13 chains through the inner layers are considered to surround the adatom site. Four reaction pathways are found: H2 formation, H-H exchange, H desorption, and H adsorption. At (1500 K, 300 K), the probabilities of H2 formation and H desorption are 0.28 and 0.24, respectively, whereas those of the other two pathways are in the order of 10-2. Half the reaction energy deposits in the vibrational motion of H2, thus leading to a highly excited state. The majority of the H2 formation results from the chemisorption-type H(g)-surface interaction. Vibrational excitation is found to be strong for H2 formed on a cold surface (~10 K), exhibiting a pronounced vibrational population inversion. Over the temperature range (10-100 K, 10 K), the probabilities of H2 formation and H-H exchange vary from 0 to ~0.1, but the other two probabilities are in the order of 10-3.

Dimerization of tert-Butylmercaptan over the Surface of Aerosil? Impregnated with Copper and Manganese

  • 박동건;박선희;이수진
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권7호
    • /
    • pp.715-719
    • /
    • 2000
  • A ceramic powder of destructive adsorbent was synthesized by impregnating copper and manganese on the surface of silica aerosil@. In-site FTIR measurements on pulses of malodorant tert-butylmercaptan injected over the powder showed that rert-butylmercaptan dimerized into di-tert-hutyldisulfide on the surface of the adsorbent in an ambient condition. GC/MS measurement on the gas over the adsorbent showed no tert-butylmercaptan remaining, and showed only the dimerization product of di-tert-butyldisulfide. Most of the dimerization product, di-tert-butyldisulfide,remained on the surface of the adsorbent as physisorbed condense, and apparently Iowered the destruction efficiency by blocking the surface from the access by tert-butylmercaptan. Upon being heated above $100^{\circ}C$ it was observed that the physisorbed di-tert-butyldisulfide dissociated back into tert-butylmercaptan. tert-butylmercaptan physisorbed on the activated carbon, thereby no dimerization was occurring on the surface of the activated carbon. In an argn environment, the dimerization reaction was practically not occurring even on the surface of the adsorbent, indicating the free oxygen in air was also participating in the dimerization reaction. Water was identified as a by-product of the dimerization reaction. Possible reactions on the surface of the adsorbent were proposed.