• Title/Summary/Keyword: Surface Radiation Dose Rate

Search Result 95, Processing Time 0.026 seconds

Evaluation of Caregivers' Exposed Dose and Patients' External Dose Rate for Radioactive Iodine (I-131) Therapy Administration in Isolated Ward (방사성요오드(I-131) 격리병실 치료 관리를 위한 환자의 체외방사선량률과 상주 보호자의 피폭선량평가)

  • Kang, Seok-Jin;Lee, Doo-Hyeon;So, Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.347-353
    • /
    • 2022
  • In this study, the radiation dose rate was measured by time and distance and evaluated whether radiation dose rate was suitable for domestic and international discharge criteria. In addition, the radiation dose emitted from the patient was measured with a glass dosimeter to evaluate the exposure dose if the caregiver stays in the isolated ward by placing a humanoid phantom instead of the caregiver at a distance of 1 m from the patient, on the second day of treatment. After 23 hours of isolation, the radiation dose rates at a distance of 1 m were 20.54 ± 6.21 µSv/h at 2.96 GBq administration and 27.94 ± 12.33 µSv/h at 3.70 GBq administration. The radiation dose rates at a distance of 1 m were 25.90 ± 2.21 µSv/h when 2.96 GBq was administered and 34.22 ± 10.06 µSv/h when 3.70 GBq was administered after 18 hours of isolation. However, if the isolation period is short may cause unnecessary radiation exposure to the third person. The reading of the attached dosimeter from the morning of the second day of treatment until removal was 0.01 to 0.95 mSv, which is a surface dose determined by the International Commission on Radiation Units and Measurements. And the depth dose was 0.01 to 0.99 mSv. On the second day of treatment, even if the patient caregivers stayed in the isolation ward, the exposure dose of the patient family did not exceed the effective dose limit of 5 mSv recommended by the ICRP and NCRP.

Propagation of radiation source uncertainties in spent fuel cask shielding calculations

  • Ebiwonjumi, Bamidele;Mai, Nhan Nguyen Trong;Lee, Hyun Chul;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3073-3084
    • /
    • 2022
  • The propagation of radiation source uncertainties in spent nuclear fuel (SNF) cask shielding calculations is presented in this paper. The uncertainty propagation employs the depletion and source term outputs of the deterministic code STREAM as input to the transport simulation of the Monte Carlo (MC) codes MCS and MCNP6. The uncertainties of dose rate coming from two sources: nuclear data and modeling parameters, are quantified. The nuclear data uncertainties are obtained from the stochastic sampling of the cross-section covariance and perturbed fission product yields. Uncertainties induced by perturbed modeling parameters consider the design parameters and operating conditions. Uncertainties coming from the two sources result in perturbed depleted nuclide inventories and radiation source terms which are then propagated to the dose rate on the cask surface. The uncertainty analysis results show that the neutron and secondary photon dose have uncertainties which are dominated by the cross section and modeling parameters, while the fission yields have relatively insignificant effect. Besides, the primary photon dose is mostly influenced by the fission yield and modeling parameters, while the cross-section data have a relatively negligible effect. Moreover, the neutron, secondary photon, and primary photon dose can have uncertainties up to about 13%, 14%, and 6%, respectively.

A Study on the Radiation Source Effect to the Radiation Shielding Analysis for a Spent-Fuel Cask Design with Burnup-Credit (연소도이득효과를 적용한 사용후핵연료 수송용기의 방사선원별 차폐영향 분석)

  • Kim, Kyung-O;Kim, Soon-Young;Ko, Jae-Hoon;Lee, Gang-Ug;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • The radiation shielding analysis for a Burnup-credit (BUC) cask designed under the management of Korea Radioactive Waste Management Corporation (KRMC) was performed to examine the contribution of each radiation source affecting dose rate distribution around the cask. Various radiation sources, which contain neutron and gamma-ray sources placed in active fuel region and the activation source, and imaginary nuclear fuel were all considered in the MCNP calculation model to realistically simulate the actual situations. It was found that the maximum external and surface dose rates of the spent fuel cask were satisfied with the domestic standards both in normal and accident conditions. In normal condition, the radiation dose rate distribution around the cask was mainly influenced by activation source ($^{60}Co$ radioisotope); in another case, the neutron emitted in active fuel region contributed about 90% to external dose rate at 1m distance from side surface of the cask. Besides, the contribution level of activation source was dramatically increased to the dose rates in top and bottom regions of the cask. From this study, it was recognized that the detailed investigation on the radiation sources should be performed conservatively and accurately in the process of radiation shielding analysis for a BUC cask.

방사성핵종 오염 토양 특성 분석 및 핵종제거 방법 연구

  • 김계남;원휘준;오원진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.209-212
    • /
    • 2002
  • Main radionuclides of the soil waste stored in Korea Atomic Energy Research Institute are Co-60 and Cs-137. Moisture content of soil is 12%, pH of soil is 5.8, and content of organic matter is 2.2 %. Radioactive concentrations of the soil particle size of which is less than 0.063mm and soil in the drum surface of which is more than radiation dose rate 0.05mR/hr are higher. Meanwhile, radioactive concentration of soil in the drum surface of which is less than radiation dose rate 0.02 mR/hr are mostly lower. On using the mixing solution of ammonium sulfate and citric acid, 62% Co was removed from soil and 41% Cs was removed. Also, on using the mixing solution of ammonium nitrate and citric acid, 61% Co was removed from soil and 39% Cs was removed, and on using the mixing solution of ammonium potassium oxalate, 36% Co was removed and only 3% Cs was removed. And on using only water, removal efficiency is less than 5%.

  • PDF

Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides

  • Kim, Sung-woo;Kwak, Jungwon;Cho, Byungchul;Song, Si Yeol;Lee, Sang-wook;Jeong, Chiyoung
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Creating individualized build-up material for superficial photon beam radiation therapy at irregular surface is complex with rice or commonly used flat shape bolus. In this study, we implemented a workflow using 3D printed patient specific bolus and describe our clinical experience. To provide better fitted build-up to irregular surface, the 3D printing technique was used. The PolyLactic Acid (PLA) which processed with nontoxic plant component was used for 3D printer filament material for clinical usage. The 3D printed bolus was designed using virtual bolus structure delineated on patient CT images. Dose distributions were generated from treatment plan for bolus assigned uniform relative electron density and bolus using relative electron density from CT image and compared to evaluate the inhomogeneity effect of bolus material. Pretreatment QA is performed to verify the relative electron density applied to bolus structure by gamma analysis. As an in-vivo dosimetry, Optically Stimulated Luminescent Dosimeters (OSLD) are used to measure the skin dose. The plan comparison result shows that discrepancies between the virtual bolus plan and printed bolus plan are negligible. (0.3% maximum dose difference and 0.2% mean dose difference). The dose distribution is evaluated with gamma method (2%, 2 mm) at the center of GTV and the passing rate was 99.6%. The OSLD measurement shows 0.3% to 2.1% higher than expected dose at patient treatment lesion. In this study, we treated Mycosis fungoides patient with patient specific bolus using 3D printing technique. The accuracy of treatment plan was verified by pretreatment QA and in-vivo dosimetry. The QA results and 4 month follow up result shows the radiation treatment using 3D printing bolus is feasible to treat irregular patient skin.

Concurrent Chemoradiotherapy versus Radiation Alone in Nasopharyngeal Carcinoma (비인강암에서 동시 항암방사선치료와 방사선치료 단독의 비교 연구)

  • Park Jin-Hong;Chang Hye-Sook;Kim Sung-Rae;Kim Sang-Yoon;Nam Soon-Yuhl;Cho Kyung-Ja;Kim Jong-Hoon;Ahn Seung-Do;Noh Young-Ju;Choi Eun-Kyung;Lee Sang-Wook
    • Korean Journal of Head & Neck Oncology
    • /
    • v.18 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • Objective: To determine the effectiveness and toxicity of chemoradiation therapy in nasopharyngeal carcinoma by comparing with radiation therapy alone. Materials and Methods: Between October 1989 and July 2000, One hundred eleven patients with newly diagnosed and histologically proven nasopharyngeal carcinoma treated in Department of Radiation Oncology, Asan Medical Center were retrospectively reviewed. Forty-five patients were treated with radiation therapy alone (Group I) and 66 patients were treated with radiation therapy and concurrent cisplatin (Group II). Cisplatin was administered once a week, on the first day of each successive week of treatment, starting on day 1 of radiation therapy and given as a intravenous bolus at a dose of $20mg/m^2$ of body-surface area. Radiation therapy was given in doses of 1.8Gy, once a day, 5 days per week with 4MV or 6 MV photons. Initial field was received a total of 60Gy and a primary tumor and enlarged lymph nodes were boosted with an high dose intracavitory brachytherapy and 3D conformal therapy. Results: The complete response rate was 86.7% in Group I, and was 90.9% in Group II. The 5 year overall survival rate for Group I was 60% and for Group II was 45% (p=0.2520). The 5 year disease free survival rate was 52% versus 45%, respectively (p=0.7507). The median follow up was 44 months versus 34 months, respectively. Conclusion: Analysis of the III patients showed no significant difference in disease free survival and overall survival in two treatment group. This retrospective analysis did not demonstrate benefit with concurrent chemoradiation using cisplatin at a dose of $20mg/m^2$ of body-surface area in treatment result than radiation alone.

The Development of a Multi-Purpose Irradiator and the Characteristic of Dose Distribution (다목적 방사선 조사장치 개발 및 선량분포특성)

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Hong, Seung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.42-48
    • /
    • 2002
  • The design, construction and performance test of a convenient multi-purpose irradiator is described. A multi-purpose irradiator using Cesium-137 has been developed for studies of low dose radiation effects in biology and for calibration of Thermo Luminescent dosimeter(TLD). During the operation, three rods of radioactive material which are 10cm in length revolve 180 degrees and irradiate biological samples, or TLD, and return to their shielded position, after the programmed time. A programmable Logic Controller(PLC) controls the sequence of operation, interlock, motor rotation and safety system. The rotation speed of biological samples can vary up to 20 RPM. A real time monitoring system was also incorporated to check and control the operation status of the irradiator. The capacity of the irradiation chamber was 4.5 liters. The isodose distribution at arbitrary vertical planes was measured by using film dosimetry. The dose-rate was 0.13 cGy/min in air and 0.11 cGy/min in water equivalent material in the case of Cesium-137. Range of activity was 2 Ci. The homogeneity of dose distribution in the chamber was ${\pm}$7%. The actual radiation level on the surface was within permissible levels. The irradiator had a maximum 0.35 mR/min radiation leakage on its surface.

Development of a Wide Dose-Rate Range Electron Beam Irradiation System for Pre-Clinical Studies and Multi-Purpose Applications Using a Research Linear Accelerator

  • Jang, Kyoung Won;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Jung Kee;Moon, Young Min;Kim, Jin Young;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.9-19
    • /
    • 2020
  • Purpose: This study aims to develop a multi-purpose electron beam irradiation device for preclinical research and material testing using the research electron linear accelerator installed at the Dongnam Institute of Radiological and Medical Sciences. Methods: The fabricated irradiation device comprises a dual scattering foil and collimator. The correct scattering foil thickness, in terms of the energy loss and beam profile uniformity, was determined using Monte Carlo calculations. The ion-chamber and radiochromic films were used to determine the reference dose-rate (Gy/s) and beam profiles as functions of the source to surface distance (SSD) and pulse frequency. Results: The dose-rates for the electron beams were evaluated for the range from 59.16 Gy/s to 5.22 cGy/s at SSDs of 40-120 cm, by controlling the pulse frequency. Furthermore, uniform dose distributions in the electron fields were achieved up to approximately 10 cm in diameter. An empirical formula for the systematic dose-rate calculation for the irradiation system was established using the measured data. Conclusions: A wide dose-rate range electron beam irradiation device was successfully developed in this study. The pre-clinical studies relating to FLASH radiotherapy to the conventional level were made available. Additionally, material studies were made available using a quantified irradiation system. Future studies are required to improve the energy, dose-rate, and field uniformity of the irradiation system.

Carbon Fiber as Material for Radiation Fixation on Device : A comparative study with acrylic (고정기구 재질로써 탄소 섬유와 아크릴의 방사선량 감쇄 영향 비교)

  • Chie, Eui-Kyu;Park, Jang-Pil;Huh, Soon-Nyung;Hong, Se-Mie;Park, Suk-Won;Kim, In-Ah;Wu, Hong-Gyun;Kim, Jae-Sung;Kang, Wee-Saing;Kim, Il-Han;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Radiation absorption parameters of carbon fiber panel were measured in comparison to acrylic panel. $30{\times}30cm$ sized 2mm thick carbon fiber panel and identical sized 6mm thick acrylic panel were placed in tray holder position and 0cm, 5cm, 10cm from surface of phantom. Radiation field size was $10{\times}10cm$. 50MU of 4MV photon was irradiated to the phantom with dose rate of 300MU/min. Source-to-phantom distance was 120cm. Radiation dose was measured with 0.6cc Farmer-type ionization chamber with 1cm build-up. Measurement was repeated thrice and normalization was done to the dose of the open field. Radiation transmission rate of carbon fiber panel is approximately 1% lower than acrylic panel of equivalent thickness. However, considering the strength of the material, transmission rate is higher for carbon fiber panel. Although carbon fiber panel increases the radiation dose when attached to the surface for about 2%, it normalizes the radiation dose to 97-99% of irradiated dose which could have been lowered to as much as 5-7.5% with acrylic panel. As carbon fiber panel is stronger than acrylic panel, radiation fixation device could be made thinner and thus lighter and furthermore, with increased radiation transmission. This in turn makes carbon fiber more ideal material for radiation fixation device over conventionally used acrylic.

Study on the Effectiveness of Radiological Technologist's Thyroid Shielding in Pediatric Paranasal Sinus X-ray Examination (어린이 부비동 엑스선 검사에서 검사자의 갑상선 차폐 효과성에 관한 연구)

  • Chang-Kyo Kwak;Jeong-Taek Kwon;Kwang-Je Lee;Il-Hwan Bae;Hye-Jung Kim;So-Mi Lee;Do-Byung Rhee
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.197-203
    • /
    • 2024
  • During paranasal sinus X-ray examinations in children, the radiological technologist's thyroid shield is often not implemented to shorten the examination time. This study measured the radiation exposure before and after the implementation of thyroid shielding by analyzing the difference in radiation exposure, the radiological technologist's could receive depending on the actual thyroid shielding. In the left TLD, when thyroid shielding was not performed(N), the radiation exposure dose(mSv) was 2.869 for the depth dose[Hp(10)] and 2.886 for the surface dose[H(3)], and when thyroid shielding was performed(Y), the Hp(10) was 0.033 and the H(3) was 0.034. In the right TLD, when thyroid shielding was not performed(N), the radiation exposure dose was 3.149 for Hp(10) and 3.137 for H(3), and when thyroid shielding was performed, the Hp(10) of (Y) was 0.013 and the H(3) was 0.015. The differences in the overall exposure dose measurement values are all statistically significant (p<0.05). The difference in radiation dose between when thyroid shielding was not performed and when thyroid shielding was performed was more than 99.2% in both cases, indicating a high radiation shielding rate.