• Title/Summary/Keyword: Surface Properties Test

Search Result 1,822, Processing Time 0.027 seconds

Effect of Surface Treatment with Phosphoric acid on the Thermal Resistant Properties of Carbon/Phenolic Composite (인산 표면 처리가 탄소/페놀릭 복합재료의 내열성능에 미치는 영향)

  • 안덕중;박종규;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.77-82
    • /
    • 1999
  • 탄소 fabric 표면을 각기 다른 농도의 인산용액으로 표면처리함으로써 2-D 카본/페놀릭 복합 재료에 미치는 물성과 내 산화성, Arc plasma Torch test를 통하여 내열성등을 알아보았으며 ESCA를 통하여 인산 표면 처리에 의한 표면 functionality를 측정하였다.

  • PDF

Studies on Control of Gilding Liquid (도금액 관리에 관한 조사연구)

  • Shin, Jong-Chul;Park, Kwang-Ja;Lee, Sung-Joo;Lee, Jong-Yong
    • Journal of Surface Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 1977
  • To support the domestic plating industry concerning localized products, survey was conducted in with chemicals and properties of plating solution. Collected samples from 55 factories throughout the country were investigated by spectigated by spectrograph, Hull cell test chemical analysis method to find major chemical components of the plating solution.

  • PDF

Effect of Processing Conditions of ITY on the Physical Properties of Compound Yarn for New Synthetic Fabrics(I) (ITY 제조공정조건이 신합섬용 복합사의 물성에 미치는 영향(I))

  • 이상정;김승진;한원희;노태철
    • Textile Coloration and Finishing
    • /
    • v.12 no.5
    • /
    • pp.273-279
    • /
    • 2000
  • Interlace textured yarn was developed in order to increase weaving process efficiency. Today, interlace texturing is very useful method of manufacturing the high added value compound yarns for new synthetic fabrics. In this research, new silky type high added value compound yarns were. manufactured by interlace texturing technology and tested their properties. The object of this research is to investigate the relationship between interlace textured yarn properties and processing parameters that is air pressure, yarn tension and take-up speed. The original filament yarns used were TTD(Thick & Thin Semi-Dull) 110d/72f and SCD(Semi-Dull Cation Dyeable) 75d/36f. 27 specimens were manufactured and tested for their physical properties-nip density, tensile properties, multi-step shrinkage test and surface structure by SEM. The air pressure was main process condition to change properties of interlace textured yarns. And interlace textured process had influence on weaving preparation process, weaving, knitting and so on. It has some influence on shrinkage properties of dyeing and finishing processes.

  • PDF

Comparison of contacting and non-contacting methods in measuring the surface roughness of texture (섬유의 거칠기 측정에 있어서 비접촉식 방식과 접촉식 방식의 비교)

  • 박연규;강대임;송후근;권영하
    • Science of Emotion and Sensibility
    • /
    • v.2 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • In order to introduce the touch to engineering and industries, it must be preceded to dstablish a quantitative barometer of the feeling. for this purpose, we developed a tactile measuring system to measure physical properties of texture, such as surface roughness, friction coefficient and compliance. The tactile measuring system uses a LASER type displacement sensor, which is a non-contacting system, in measuring the surface roughness. By considering that human tactile system is a contacting mechanism, this non-contacting method needs to be modified. As a precedent research of that, we compared the contacting and non-contacting method in this paper. Surface roughness of ten cloths were measured by using the measuring system, then compared to the test results using the Kawabata evaluation system(KES), which uses a contacting method in measuring the surface roughness.

  • PDF

Effect of RF Superimposed DC Magnetron Sputtering on Electrical and Bending Resistances of ITO Films Deposited on PET at Low Temperature (DC마그네트론 스퍼터링법으로 PET 기판위에 저온 증착한 ITO박막의 비저항과 굽힘 저항성에 대한 RF인가의 영향)

  • Park, Mi-Rang;Lee, Sung-Hun;Kim, Do-Geun;Lee, Gun-Hwan;Song, Pung-Keun
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.5
    • /
    • pp.214-219
    • /
    • 2008
  • Indium tin oxide (ITO) films were deposited on PET substrate by RF superimposed DC magnetron sputtering using ITO (doped with 10 wt% $SnO_2$) target. Substrate temperature was maintained below $750^{\circ}C$ without intentionally substrate heating during the deposition. The discharge voltage of DC power supply was decreased from 280 V to 100 V when superimposed RF power was increased from 0 W to 150 W. The electrical properties of the ITO films were improved with increasing of superimposed RF power. In the result of cyclic bending test, relatively high mechanical property was obtained for the ITO film deposited with RF power of 75 W under DC current of 0.75 A which could be attributed to the decrease of internal stress caused by decrease in both deposition rate and plasma impedance.

Effect of δ-Ferrite on the Hot Workability and Surface Defect of STS 304 Billets Containing 3 wt. % Cu (3 wt.% Cu 함유 STS 304 빌렛의 열간가공성과 표면결합에 미치는 δ-ferrite의 영향)

  • Kim, S.W.
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.379-388
    • /
    • 2004
  • To investigate the effect of D-ferrite on the hot workability and surface defect of STS 304 billets containing 3 wt. % Cu, microstructure observations and high temperature mechanical properties test were carried out for the specimens extracted mainly from raw or oxidized billets. It was found that the total $\delta$-ferrite content has little influence on the hot workability, even though the fracture cracks due to high temperature tension or compression test were initiated and propagated mostly along $\delta$/${\gamma}$ boundary in the specimens. On the other hand, it was supposed that the direct causes of surface defects in the wire rolled from the as-continuously cast billet were the grain boundary embrittlement arose from the deep diffusion of oxygen into the grain boundary, and the oxidation of $\delta$-ferrite connected by a grain boundary to the surface during the billet reheating process as well.

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

Application of Nano Coating to ACSR conductor for the Protection of Transmission lines against Solar Storms, Surface Flashovers, Corona and Over voltages

  • Selvaraj, D. Edison;Mohanadasse, K.;Sugumaran, C. Pugazhendhi;Vijayaraj, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2070-2076
    • /
    • 2015
  • Nano composite materials were multi-constituent combinations of nano dimensional phases with distinct differences in structure, chemistry and properties. Nano particles were less likely to create large stress concentrations and thereby can avoid the compromise of the material ductility while improve other mechanical properties. Corona discharge was an electrical discharge. The ionization of a fluid surrounding a conductor was electrically energized. This discharge would occur when the strength of the electric field around the conductor was high enough to form a conductive region, but not high enough to cause electrical breakdown or arcing to nearby objects. This paper shows all the studies done on the preparation of nano fillers. Special attention has given to the ACSR transmission line conductor, TiO2 nano fillers and also to the evaluation of corona resistance on dielectric materials discussed in detail. The measurement of the dielectric properties of the nano fillers and the parameters influencing them were also discussed in the paper. Corona discharge test reveals that in 0%N ACSR sample corona loss was directly proportional to the applied line voltage. No significant change in corona loss between 0%N and 1%N. When TiO2 nano filler concentration was increased up to 10%N fine decrement in corona loss was found when compared to base ACSR conductor, corona loss was decreased by 40.67% in 10%N ACSR sample. It was also found from the surface conditions test that inorganic TiO2 nano filler increases the key parameters like tensile strength and erosion depth.

Evaluation of Interface Friction Properties between Coarse Grained Materials and Geosynthetics (조립재료와 지오신세틱스의 접촉면 마찰특성 평가)

  • Chang, Yongchai;Lee, Seungeun;Seo, Jiwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.53-59
    • /
    • 2008
  • The purpose of the study was to evaluate how much gastropod shell effected its properties better than crushed stone as coarse grained materials by comparing friction properties of a contact surface between coarse grained materials and geosynthetics with the large-scale direct shear test. To achieve the purpose, the study compared and analyzed friction coefficient and friction angle by making crushed stone or gastropod shell into model ground and by installing and shearing non-woven fabric or geostrip geosynthetics. As the results of the analysis, crushed stone had the internal friction angle of $33.8^{\circ}$ when its unit weight was $13.7kN/m^3$ and gastropod shell had the internal friction angle of $35.4^{\circ}$ when its unit weight was $5.4kN/m^3$. Also, the friction angle of a contact surface between geosynthetics and crushed stone was larger than the friction angle of a contact surface between geosynthetics and gastropod shell.

  • PDF