• 제목/요약/키워드: Surface Properties Test

검색결과 1,810건 처리시간 0.032초

이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 표면 특성 시험에 관한 연구 (A Study on the Surface Properties Test of the Grinding Disk Assembly for Crushing Materials in Secondary Cells)

  • 한상필;이동혁
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.33-41
    • /
    • 2023
  • Metal raw materials and chemical additives, which are raw materials for secondary batteries, are pulverized by the high-speed rotation of the Grinding Disc of the Classifier Separator Mill (CSM). Grinding discs are required to withstand abrasion, corrosion, high-speed rotational force and impact. In order to analyze the stability of domestic and foreign grinding discs, quality tests including surface roughness, surface lubrication, surface state measurement, and surface 3D shape measurement were analyzed. When producing developed products, it shows that excellent products can be produced.

복합방수공법으로 구성된 반복인장시험 분석 (Analysis of Repeated Tensile Test Results Consisting of Composite Waterproof Methods)

  • 김병일;오상근;송제영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.41-42
    • /
    • 2023
  • Test results for a total of four types of complex waterproofing methods were analyzed. In the case of the A method, the stress generated by high-viscosity compounds adhering to the base test body during the behavior of the test body was transferred to the sheet surface layer. In the case of the B method and the C method, the properties of the waterproof sheet consisting of a non-hardened seal based and a non-hardened seal are well reflected and stress absorption in the non-hardened seal layer acts strongly, rapidly reducing stress transfer to the surface of the waterproof sheet. In the case of the D method, slip occurs due to repeated behavior, and the stress on the attachment surface is reduced, and the stress transfer to the surface is greatly reduced. As a result, four types of composite waterproofing methods resulted in changing the stress transfer mechanism caused by behavior on the concrete surface due to the physical properties of the internal constituent material of the waterproof sheet.

  • PDF

침탄 처리 소재의 표면 분석을 위한 나노압입시험법의 응용 (Application of Nanoindentation Technique for Characterizing Surface Properties of Carburized Materials)

  • 최인철;오명훈
    • 열처리공학회지
    • /
    • 제35권3호
    • /
    • pp.139-149
    • /
    • 2022
  • In the automobile and shipbuilding industries, various materials and components require superior surface strength, excellent wear resistance and good resistance to repeated loads. To improve the surface properties of the materials, various surface heat treatment methods are used, which include carburizing, nitriding, and so on. Among them, carburizing treatment is widely used for structural steels containing carbon. The effective carburizing thickness required for materials depends on the service environment and the size of the components. In general, however, there is a limit in evaluation of the surface properties with a standardized mechanical test method because the thickness or cross-sectional area of the carburized layer is limited. In this regard, the nanoindentation technique has lots of advantages, which can measure the mechanical properties of the material surface at the nano and micro scale. It is possible to understand the relationship between the microstructural change in the hardened layer by carburizing treatment and the mechanical properties. To be spread to practical applications at the industrial level, in this paper, the principle of the nanoindentation method is described with a representative application for analyzing the mechanical properties of the carburized material.

레이저 표면 딤플 패턴된 PMMA 소재 표면의 식염수 윤활 하에서의 미끄럼 마찰특성 (Sliding Friction Properties of Laser Surface Dimple Patterned on PMMA under Saline Lubricated)

  • 현동호;채영훈;정다이
    • Tribology and Lubricants
    • /
    • 제39권4호
    • /
    • pp.148-153
    • /
    • 2023
  • Laser surface dimple patterning is a method of laser surface texturing to reduce lubrication sliding friction. The dimple pattern improves friction properties by reserving lubricant and trapping worn particles. This surface texturing technology can reduce coefficients of friction and extend the service life by applying a uniform load to the surface of the material. This study investigates the friction properties using PMMA, a highly compatible polymer material, as a specimen. We observe the friction properties of untextured specimens by processing specimens with dimple pattern densities of 5 and 10 on the surface area using laser. Dimple pattern density affects the coefficient of friction. We present the following friction property results using a pin-on-disc sliding friction test under saline lubrication. The coefficients of friction for the dimple patterned specimens are lower than those for the untextured specimens. As the normal load and sliding speed increase, the coefficients of friction of the dimple pattern specimens decrease differently from those of the untextured specimens. The specimen with a dimple pattern density of 5 at a normal load of 24.5 N and a sliding speed of 0.22 m/s has the best friction properties. Notably, different friction properties are exhibited depending on the dimple pattern densities.

Effect of Tio2 particles on the mechanical, bonding properties and microstructural evolution of AA1060/TiO2 composites fabricated by WARB

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • 제9권2호
    • /
    • pp.99-107
    • /
    • 2020
  • Reinforced aluminum alloy base composites have become increasingly popular for engineering applications, since they usually possess several desirable properties. Recently, Warm Accumulative Roll Bonding (WARB) process has been used as a new novel process to fabricate particle reinforced metal matrix composites. In the present study, TiO2 particles are used as reinforcement in aluminum metal matrix composites fabricated through warm accumulative roll bonding process. Firstly, the raw aluminum alloy 1060 strips with TiO2 as reinforcement particle were roll bonded to four accumulative rolling cycles by preheating for 5 min at 300℃before each cycle. The mechanical and bonding properties of composites have been studied versus different volume contents of TiO2 particles by tensile test, peeling test and vickers micro-hardness test. Moreover, the fracture surface and peeling surface of samples after the tensile test and peeling test have been studied versus different amount of TiO2 volume contents by scanning electron microscopy. The results indicated that the strength and the average vickers micro-hardness of composites improved by increasing the volume content of TiO2 particles and the amount of their elongation and bonding strength decreased significantly.

Statistical models for mechanical properties of UHPC using response surface methodology

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.667-675
    • /
    • 2017
  • One of the main disadvantages of Ultra High Performance Concrete exists in the large suggested value of UHPC ingredients. The purpose of this study was to find the models mechanical properties which included a 7, 14 and 28-day compressive strength test, a 28-day splitting tensile and modulus of rupture test for Ultra High Performance Concrete, as well as, a study on the interaction and correlation of five variables that includes silica fume amount (SF), cement 42.5 amount, steel fiber amount, superplasticizer amount (SP), and w/c mechanical properties of UHPC. The response surface methodology was analyzed between the variables and responses. The relationships and mathematical models in terms of coded variables were established by ANOVA. The validity of models were checked by experimental values. The offered models are valid for mixes with the fraction proportion of fine aggregate as; 0.70-1.30 cement amount, 0.15-0.30 silica fume, 0.04-0.08 superplasticizer, 0.10-0.20 steel fiber, and 0.18-0.32 water binder ratio.

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF

상압 플라즈마 표면처리를 통한 태양광모듈 커버글라스와 불소계 코팅의 응착력 향상 (Improved Adhesion of Solar Cell Cover Glass with Surface-Flourinated Coating Using Atmospheric Pressure Plasma Treatment)

  • 김태현;박우상
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.244-248
    • /
    • 2018
  • We propose a method for improving the reliability of a solar cell by applying a fluorinated surface coating to protect the cell from the outdoor environment using an atmospheric pressure plasma (APP) treatment. An APP source is operated by radio frequency (RF) power, Ar gas, and $O_2gas$. APP treatment can remove organic contaminants from the surface and improve other surface properties such as the surface free energy. We determined the optimal APP parameters to maximize the surface free energy by using the dyne pen test. Then we used the scratch test in order to confirm the correlation between the APP parameters and the surface properties by measuring the surface free energy and adhesive characteristics of the coating. Consequently, an increase in the surface free energy of the cover glass caused an improvement in the adhesion between the coating layer and the cover glass. After treatment, adhesion between the coating and cover glass was improved by 35%.

Fractured Surface Morphology and Mechanical Properties of Ni-Cr Based Alloys with Mo Content for Dental Applications

  • Kim, Hyun-Soo;Son, Mee-Kyoung;Choe, Han-Cheol
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.260-264
    • /
    • 2016
  • In this study, fractured surface morphology and mechanical properties of Ni-Cr-Mo alloys with various contents of Mo for dental material use have been evaluated by mechanical test. The alloys used were Ni-13Cr-xMo alloys with Mo contents of 4, 6, 8, and 10 wt.%, prepared by using a vacuum arc-melting furnace. Ni-13Cr-xMo alloys were used for mechanical test without heat treatment. The phase and microstructure of alloys using an X-ray diffraction (XRD) and optical microscopy (OM) were evaluated. To examine the mechanical properties of alloys according to microstructure changes, the tensile test and the hardness test were carried out using tensile tester. To understand the mechanism of Mo addition to Ni-Cr alloy on mechanical property, the morphology and fractured surfaces of alloys were investigated by field-emission scanning electron microscope (FE-SEM). As a result, 79Ni-13Cr-8Mo alloy was verified that the tensile strength and the hardness were better than others. Varying Mo content, the changes of microstructures of alloys were identified by OM and SEM and that of 79Ni-13Cr-8Mo alloy was proved fabricated well. Microstructures of alloys were changed depending on Mo content ratio. It has been observed that 8% alloy had the most suitable mechanical property for dental alloy.

Characterization of Cr-P-C/MoS2 composite plating electro-deposited from trivalent chromium

  • Park, Jong-Kyu;Seo, Sun-Kyo;Byoun, Young-Min;Lee, Chi-Hwan
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.445-449
    • /
    • 2018
  • Chromium plating is a common surface treatment technique extensively applied in industry due its excellent properties which include substantial hardness, abrasion resistance, corrosion resistance, surface color, and luster. In this study, the effect of $MoS_2$ particles of the composite coating was investigated. To improve the lubrication of mold, $Cr-P-C/MoS_2$ composite plating was studied by varying the $MoS_2$ content. The current efficiency of the composite plating incorporated $MoS_2$ particles was increased at $MoS_2$ contents of 0.5 and 1.0 g/l due to the incorporation of fine particles. On the other hand, when the content of $MoS_2$ is 1.0 g/l or more, the current efficiency is lowered due to an increase in impact on the cathode surface. In order to evaluate the mechanical properties of Scratch test were conducted. Scratch test confirmed the lubricity and abrasion resistance characteristics revealed that the composite plating with added $MoS_2$ had relatively low surface roughness and uniform surface modification to improve its properties.