Characterization of Cr-P-C/MoS2 composite plating electro-deposited from trivalent chromium

  • Published : 2018.12.01

Abstract

Chromium plating is a common surface treatment technique extensively applied in industry due its excellent properties which include substantial hardness, abrasion resistance, corrosion resistance, surface color, and luster. In this study, the effect of $MoS_2$ particles of the composite coating was investigated. To improve the lubrication of mold, $Cr-P-C/MoS_2$ composite plating was studied by varying the $MoS_2$ content. The current efficiency of the composite plating incorporated $MoS_2$ particles was increased at $MoS_2$ contents of 0.5 and 1.0 g/l due to the incorporation of fine particles. On the other hand, when the content of $MoS_2$ is 1.0 g/l or more, the current efficiency is lowered due to an increase in impact on the cathode surface. In order to evaluate the mechanical properties of Scratch test were conducted. Scratch test confirmed the lubricity and abrasion resistance characteristics revealed that the composite plating with added $MoS_2$ had relatively low surface roughness and uniform surface modification to improve its properties.

Keywords

Acknowledgement

Supported by : Inha University

References

  1. A. Liang, L. Ni, Q. Liu and J. Zhang, Surf. Coat. Technol. 218 (2013) 23-29. https://doi.org/10.1016/j.surfcoat.2012.12.021
  2. X. He, Q. Zhu, B. Hou, C. Li, Y. Jiang, C. Zhang and L. Wu, Surf. Coat. Technol. 262 (2015) 148-153. https://doi.org/10.1016/j.surfcoat.2014.12.034
  3. H. Ramezani-Varzaneh, S. Allahkaram and M. Isakhani-Zakaria, Surf. Coat. Technol. 244 (2014) 158-165. https://doi.org/10.1016/j.surfcoat.2014.02.002
  4. T. Hardand, A. Watson, Met. Finish. 98 (2000) 388-399. https://doi.org/10.1016/S0026-0576(00)80348-7
  5. Z.F. Zhang, G. He, J. Eckert, L. Schultz, Phys. Rev. Lett. 91[4] (2003) 045505. https://doi.org/10.1103/PhysRevLett.91.045505
  6. P.U. Skeldon, H.W. Wang, G.E. Thompson, Wear 206 (1997) 187-196. https://doi.org/10.1016/S0043-1648(96)07350-4
  7. C.T.J. Low, R.G.A. Wills, F.C. Walsh, Surf. Coat. Technol. 201[2] (2006) 371-383. https://doi.org/10.1016/j.surfcoat.2005.11.123
  8. J. Steinbach, H. Ferkel, Scr. Mater. 44[8-9] (2001) 1813-1816. https://doi.org/10.1016/S1359-6462(01)00799-0
  9. S.L. Kuoa, Y.C. Chen, M.D. Ger, W.H. Hwu, Mater. Chem. Phys. 86[1] (2004) 5-10. https://doi.org/10.1016/j.matchemphys.2003.11.040
  10. M.C. Choua, M.D. Ger, S.T. Ke, Y.R. Huang, S.T. Wu, Mater. Chem. Phys. 92[1] (2005) 146-151. https://doi.org/10.1016/j.matchemphys.2005.01.021
  11. G. Veloso, H.R. Alves, J.R.T. Branco, Mater. Res. 7[1] (2004) 195-202. https://doi.org/10.1590/S1516-14392004000100026
  12. H. Ataee-Esfahani, M.R. Vaezi, L. Nikzad, B. Yazdani, S.K. Sadrnezhaad , J. Alloys. Compd. 484[1-2] (2009) 540-544. https://doi.org/10.1016/j.jallcom.2009.04.146
  13. P. van Essen, R. Hoy, J.D. Kamminga, A.P. Ehiasarian, G.C.A.M. Janssen, Surf. Coat. Technol. 200[11] (2006) 3496-3502. https://doi.org/10.1016/j.surfcoat.2004.09.020
  14. J. Takadoum, H.H. Bennani, Surf. Coat. Technol. 96[2-3] (1997) 272-282. https://doi.org/10.1016/S0257-8972(97)00182-5