• Title/Summary/Keyword: Surface Properties Test

Search Result 1,822, Processing Time 0.031 seconds

Stick-slip Characteristics of Magnetorheological Elastomer under Magnetic Fields (자기장에 따른 자기유변탄성체의 스틱 슬립 현상 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee;Choi, Jong Myoung
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This paper investigates the stick-slip characteristic of magnetorheological elastomer (MRE) between an aluminum plate and the surface of the MRE. MRE is a smart material and it can change its mechanical behavior with the interior iron particles under the influence of an applied magnetic field. Stick-slip is a movement of two surfaces relative to each other that proceeds as a series of jerks caused by alternate sticking from friction and sliding when the friction is overcome by an applied force. This special tribology phenomenon can lead to unnecessary wear, vibration, noise, and reduced service life of work piece. The stick-slip phenomenon is avoided as far as possible in the field of mechanical engineering. As this phenomenon is a function of material property, applied load, and velocity, it can be controlled using the characteristics of MRE. MRE as a soft smart material, whose mechanical properties such as modulus and stiffness can be changed via the strength of an external magnetic field, has been widely studied as a prospective replacement for general rubber in the mechanical domain. In this study, friction force is measured under different loads, speed, and magnetic field strength. From the test results, it is confirmed that the stick-slip phenomenon can be minimized under optimum conditions and can be applied in various mechanical components.

Effect of the Structure of the Smallest Poresize Layer on the Permeability of PES Microfiltration Membranes (최소 기공층 구조가 PES계 정밀여과막 투과 성능에 미치는 영향)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • PES (polyethersulfone) membranes with highly enhanced their asymmetry were prepared by phase inversion process. The membranes were prepared by using PES/DMF (N,N-dimethylformamide)/TSA (p-toluenesulfonic acid)/PVP (polyvinylpyrrolidone) casting solution and water coagulant. The pre-coagulation of membrane surface which was induced by an addition of TSA as a demixing agent and PVP as a swelling polymer in the PES solution and humid exposure time, played a crucial role in determining morphological properties and the PWP (pure water permeation) performance. The PES solution was coated on polyester film under condition of 80% humidity for a while ($72{\sim}144$ sec) before immersing in a coagulation bath. The characterization of membranes was carried out by a capillary flow porometer, a FE-SEM and a permeation test apparatus. As the thickness of the smallest pore size layer (SPL) decreased, the asymmetry of membrane increased under conditions of 20 wt% of TSA and 10 wt% of PVP in 11 wt% of PES solution during longer humid contact time. As a result, the membranes showed a remarkable increase of PWP.

Optimal Design of the Flexure Mounts for Satellite Camera by Using Design of Experiments (실험계획법을 이용한 인공위성 주반사경 플렉셔 마운트의 최적 설계)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.693-700
    • /
    • 2008
  • The primary mirror system in a satellite camera is an opto-mechanically coupled system for a reason that optical and mechanical behaviors are intricately interactive. In order to enhance the opto-mechanical performance of the primary mirror system, opto-mechanical behaviors should be thoroughly investigated by using various analysis procedures such as elastic, thermo-elastic, optical and eigenvalue analysis. In this paper, optimal design of the bipod flexure mounts for high opto-mechanical performance is performed. Optomechanical performances considered in this paper are RMS wavefront error under the gravity and thermal loading conditions and 1st natural frequency of the mirror system. The procedures of the flexure mounts design based on design of experiments and statistics is as follows. The experiments for opto-mechanical analysis are constructed based on the tables of orthogonal arrays and analysis of each experiment is carried out. In order to deal with the multiple opto-mechanical properties, MADM (Multiple-attribute decision making) is employed. From the analysis results, the critical design variables of the flexure mounts which have dominant influences on opto-mechanical performance are determined through analysis of variance and F-test. The regression model in terms of the critical design variables is constructed based on the response surfaceanalysis. Then the critical design variables are optimized from the regression model by using SQP algorithm. Opto-mechanical performance of the optimal bipod flexure mounts is verified through analysis.

Flexural strength properties of MoSi2 based composites (MoSi2 복합재료의 굽힘강도 특성)

  • Lee, Sang-Pill;Lee, Hyun-Uk;Lee, Jin-Kyung;Bae, Dong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.66-71
    • /
    • 2011
  • The flexural strength of $MoSi_2$ based composites reinforced with Nb sheets has been investigated, based on the detailed examination of their microstructure and fractured surface. Both sintered density and porosity of Nb/$MoSi_2$ composites were also examined. Nb/$MoSi_2$ composites were fabricated by different conditions such as temperature, applied pressure and its holding time, using a hot-press device. The volume fraction of Nb sheet in this composite system was fixed as 10%. The characterization of Nb/$MoSi_2$ composites were investigated by means of optical microscopy, scanning electron microscope and three point bending test. Nb/$MoSi_2$ composites represented a dense morphology at the interfacial region, accompanying the creation of two types of reaction layer by the chemical reaction of Nb and $MoSi_2$. Nb/$MoSi_2$ composites possessed an excellent density at the fabricating temperature of $1350^{\circ}C$, corresponded to about 95% of theoretical density. The flexural strength of Nb/$MoSi_2$ romposites were greatly affected by the pressure holding time at the same fabricating temperature, owing to the large suppression of porosity in the microstructure. Especially, Nb/$MoSi_2$ composites represented a good flexural strength of about 310 MPa at the fabricating condition of $1350^{\circ}C$, 30MPa and 60min, accompanying the pseudo-ductile fracture behavior by the deformation of Nb sheet and the interfacial delamination.

The Study for Fracture in the First Stage Blade of Aircraft Engine (항공기엔진용 1단계 터빈블레이드에 대한 파손 연구)

  • Yoon, Youngwoung;Park, Hyoungkyu;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.806-813
    • /
    • 2018
  • The fracture of a turbine blade of aerospace engine is presented. Although there are a lot of causes and failure modes in blades, the main failure modes are two ways that fracture and fatigue. Degradation of blade material affects most failure modes. Total propagation of failure in this study specifies failure of fracture type. Some section appears fatigue mode. Especially since this study describes analysis of failure for blade in high temperature, it can be a case in point. Analysed blade is Ni super alloy. Investigations of blade are visual inspection, material, microstructure, high temperature stress rupture creep test, analysis and fracture surface, etc. The root cause for fracture was stress rupture due to abnormal thermal environment. Thermal property of Ni super alloy is excellent but if each chemical composition of alloys are different due to change mechanical properties, selection of material is very important.

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

Microstructure and Tensile Deformation Behavior of Ni-Cr-Al Powder Porous Block Material (블록형 Ni-Cr-Al 분말 다공성 소재의 미세조직 및 인장 변형 거동)

  • Kim, Chul-O;Bae, Jung-Suk;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.93-99
    • /
    • 2015
  • This study investigated the microstructure and tensile properties of a recently made block-type Ni-Cr-Al powder porous material. The block-type powder porous material was made by stacking multiple layers of powder porous thin plates with post-processing such as additional compression and sintering. This study used block-type powder porous materials with two different cell sizes: one with an average cell size of $1,200{\mu}m$ (1200 foam) and the other with an average cell size of $3,000{\mu}m$ (3000 foam). The ${\gamma}$-Ni and ${\gamma}^{\prime}-Ni_3Al$ were identified as the main phases of both materials. However, in the case of the 1,200 foam, a ${\beta}$-NiAl phase was additionally observed. The relative density of each block-type powder porous material, with 1200 foam and 3000 foam, was measured to be 5.78% and 2.93%, respectively. Tensile tests were conducted with strain rates of $10^{-2}{\sim}10^{-4}sec^{-1}$. The test result showed that the tensile strength of the 1,200 foam was 6.0~7.1 MPa, and that of 3,000 foam was 3.0~3.3 MPa. The elongation of the 3,000 foam was higher (~9%) than that (~2%) of the 1,200 foam. This study also discussed the deformation behavior of block-type powder porous material through observations of the fracture surface, with the results above.

Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process (정전 분무 공정으로 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화 특성에 미치는 기공 크기의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing and sintering processes were conduced. In order to examine the effect of cell size ($200{\mu}m$, $450{\mu}m$, $500{\mu}m$) in process, pre-samples were sintered for two hours at temperature of $1450^{\circ}C$, in $H_2$ atmospheres. A 24-hour thermo gravimetric analysis test was conducted at $1000^{\circ}C$ in a 79% $N_2$ + 21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing cell size. In the $200{\mu}m$ porous metal with a thinner strut and larger specific surface area, the depletion of the stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared with the 450, $500{\mu}m$ porous metals.

Improvement of Microstructure and Creep Properties of Ti-6Al-4V alloy by Plasma Carburization (Ti-6Al-4V 합금의 미세조직 및 크리프 특성에 미치는 플라즈마 침탄 처리의 영향)

  • Park, Y.G.;Wey, M.Y.;Park, J.U.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the wear resistance of Ti-6Al-4V alloy, plasma carburization treatment was newly carried out without consumption of its good specific strength and fatigue life over the temperature. Effect of the plasma carburization was analyzed and compared with the non-treated alloy by microstructural observation, structure characterization and mechanical test. The plasma treated alloy formed a carburized layer of about $150{\mu}m$ in depth from the surface, where a fine and hard particles of TiC and $V_4C_3$ were homogeneously dispersed through the layer. The steady-static creep behaviors of Ti-6Al-4V alloy, using the constant stress creep tester, were investigated over the temperature range of $510{\sim}550^{\circ}C$(0.42~0.44Tm) and the stress range of 200~275 MPa. Stress exponent(n) was decreased from 9.32 of non-treatment specimen to 8.95 of carburized, however, the activation energy(Q) increased from 238 to 250 kJ/mol with the same condition as indicated above. From the above results, it can be concluded that the static creep deformation for Ti-6Al-4V alloy was controlled by the dislocation climb over the ranges of the experimental conditions.

An Analysis of the Frictional Energy on the Rubber Block (고무 블록의 마찰에너지 해석)

  • Yoo, Hyun-Seung;Kim, Doo-Man;Lee, Sang-Ju;Ko, Bum-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.619-626
    • /
    • 2007
  • The analysis of the frictional energy of the rubber block with contact to the surface is necessary to study the wear for rubber. It is important to define the relationship of the frictional energy and wear, as the most theory of the wear of rubber product is based on the frictional energy of rubber block. To predict the life of the rubber block, the most of research has been focused on the use of the finite element analysis or the actual experiments which need the many time and expensive costs.Therefore, this research is achieved the successful results of the analysis to the frictional energy by analytic method. This frictional energy is function of the material properties, the shape of block, the vertical and horizontal load and the block moving speed. The analytical results are compared with the test results of this paper which can be used for the analysis of the friction behavior for the wear estimation of the rubber products.