Effect of the Structure of the Smallest Poresize Layer on the Permeability of PES Microfiltration Membranes

최소 기공층 구조가 PES계 정밀여과막 투과 성능에 미치는 영향

  • Kim, No-Won (Department of Environment Engineering, Dong-Eui University)
  • 김노원 (동의대학교 공과대학 환경공학과)
  • Published : 2009.03.30

Abstract

PES (polyethersulfone) membranes with highly enhanced their asymmetry were prepared by phase inversion process. The membranes were prepared by using PES/DMF (N,N-dimethylformamide)/TSA (p-toluenesulfonic acid)/PVP (polyvinylpyrrolidone) casting solution and water coagulant. The pre-coagulation of membrane surface which was induced by an addition of TSA as a demixing agent and PVP as a swelling polymer in the PES solution and humid exposure time, played a crucial role in determining morphological properties and the PWP (pure water permeation) performance. The PES solution was coated on polyester film under condition of 80% humidity for a while ($72{\sim}144$ sec) before immersing in a coagulation bath. The characterization of membranes was carried out by a capillary flow porometer, a FE-SEM and a permeation test apparatus. As the thickness of the smallest pore size layer (SPL) decreased, the asymmetry of membrane increased under conditions of 20 wt% of TSA and 10 wt% of PVP in 11 wt% of PES solution during longer humid contact time. As a result, the membranes showed a remarkable increase of PWP.

PES/DMF/TSA/PVP 고분자용액을 물에 침지시 시키는 상전이 공정을 통하여 비대칭성이 향상된 PES 멤브레인을 제조하였다. PES (polyethersulfone) 용액에 응고제 (p-toluenesulfonic acid, TSA)와 습윤제 고분자 (polyvinylpyrrolidone, PVP)의 첨가와 습윤 상태에 노출 시간으로 일어나는 멤브레인 표면의 pre-coagulation 현상은 멤브레인의 구조적 특성과 투과량 특성에 있어 중요한 역할을 한다. PES 용액은 폴리에스터 필름에 코팅된 후 약 $72{\sim}144$초 동안 80%의 습도하에서 공기에 노출된 후 응고조에 침지되었다. Capillary flow porometer, FE-SEM과 수투과 평가장치를 통하여 멤브레인의 특성을 살펴보았다. TSA 20 wt%와 PVP 10 wt%가 첨가된 11 wt%의 PES 용액에서 멤브레인 구조의 비대칭성이 크게 향상되었으며 최소 기공충의 두께도 얇아짐을 볼 수 있었다. 그 결과로 수투과량에 큰 증가를 가져옴을 볼 수 있었다.

Keywords

References

  1. M. Mulder, 'Basic Principles of Membrane Technology', pp. 71-89, Kluwer Academic Publishers, London (1996)
  2. I. F. Wang, R. A. Morris, and R. F. Zepf, 'Highly asymmetric, hydrophilic, microfiltration membranes having large pore diameters', U.S. Patent 6,939,468 (2005)
  3. Z. Li and C. Jiang, 'Investigation into the rheological properties of PES/NMP/ nonsolvent membrane-forming systems', J. Appl. Polym. Sci., 82, 283 (2001) https://doi.org/10.1002/app.1850
  4. J. Y. Jang, Y. S. Chung, Y. M. Lee, and S. Y. Nam, 'Preparation and properties of membranes for the application of desalting, refining and concentrating for dye processing', Membrane Journal, 16, 213 (2006)
  5. M. C. Porter, 'Handbook of Industrial Membrane Technology', pp. 114-134, Noyes Publication, New Jersey (1990)
  6. L. Y. Lafreniere, F. Talbot, T. Matsuura, and S. Sourirajan, 'Effect of poly-(vinylpyrrolidone) additive on the performance of poly(ethersulfone) ultrafiltration membranes', Ind. Eng. Chem. Res., 26, 2385 (1987) https://doi.org/10.1021/ie00071a035
  7. T.-H. Young and L.-W. Chen, 'Pore formation mechanism of membranes from phase inversion process', Desalination, 103, 233 (1995) https://doi.org/10.1016/0011-9164(95)00076-3
  8. C. W. Yao, R. P. Burford, A. G. Fane, and C. J. D. Fell, 'Effect of coagulation conditions on structure and properties of membranes from aliphatic polyamides', J. Membr. Sci., 38, 113 (1988) https://doi.org/10.1016/S0376-7388(00)80874-1
  9. S. Munari, A. Bottino, G. C. Roda, and G. Capanelli, 'Preparation of ultrafiltration membranes. State of the art', Desalination, 77, 85 (1990)
  10. T.-H. Young and L.-W. Chen, 'A two step mechanism of diffusion-controlled ethylene vinyl alcohol membrane formation', J. Membr. Sci., 57, 69 (1991) https://doi.org/10.1016/S0376-7388(00)81163-1
  11. M. S. Lee and K. H. Youm, 'Preparation of PESTiO2 hybrid membranes and evaluation of membrane properties', Membrane Journal, 17, 219, (2007)
  12. B. G. Park, S.-H. Kong, and S. Y. Nam, 'Phase Behavior and morphological studies of polysulfone membranes; The effect of Alcohols used as a non-solvent coagulant', Membrane Journal, 15, 272 (2005)
  13. T.-H. Young and L.-W. Chen, 'A diffusion-controlled model for wet-casting membrane formation', J. Membr. Sci., 59, 169 (1991) https://doi.org/10.1016/S0376-7388(00)81181-3
  14. Y. L. Lucie and D. F. Talbot, 'Effect of Polyvinylpyrrolidone Additive on the Perfrmance of Polyethersulfone Ultrafiltration Membranes', Ind. Eng, Chem, Res., 26, 2385 (1987) https://doi.org/10.1021/ie00071a035
  15. S.-J. Shin, J.-P. Kim, H.-J. Kim, J.-H. Jeon, and B.-R. Min, 'Preparation and characterization of polyethersulfone microfiltration membranes by a 2 methoxyethanol additive', Desalination, 186, 1 (2005) https://doi.org/10.1016/j.desal.2005.03.092
  16. M.-J. Han, 'Effect of propionic acid in the casting solution on the characteristics of phase inversion polysulfone membranes', Desalination, 121, 31 (1999) https://doi.org/10.1016/S0011-9164(99)00005-3
  17. A. Idris, N. M. Zain, and M. Y. Noordin, 'Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives', Desalination, 207, 324 (2007) https://doi.org/10.1016/j.desal.2006.08.008
  18. N. Kim, 'Preparation and characteristics of polyethersulfone microfiltration membranes', Membrane Journal, 17, 329 (2007)
  19. W. Wilson, K. Gupta, A. Jena, R. Webber, M. Connoly, E. Mayer, B.V. Ramarao, and C. Dryer, 'Advanced technique for pore structure characterization theory & practices: PMI Short Course June 2004', PMI, New York (2004)