• Title/Summary/Keyword: Surface Passivation

검색결과 362건 처리시간 0.028초

Effect of Power Mode of Plasma Anodization on the Properties of formed Oxide Films on AZ91D Magnesium Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.544-550
    • /
    • 2018
  • The passivation of AZ91D Mg alloys by plasma anodization requires deliberate choice of process parameters due to the presence of large amounts of structural defects. We study the dependence of pore formation, surface roughness and corrosion resistance on voltage by comparing the direct current (DC) mode and the pulse wave (pulse) mode in which anodization is performed. In the DC plasma anodization mode, the thickness of the electrolytic oxide film of the AZ91D alloy is uneven. In the pulse mode, the thickness is relatively uniform and the formed thin film has a three-layer structure. The pulse mode creates less roughness, uniform thickness and improved corrosion resistance. Thus, the change of power mode from DC to pulse at 150 V decreases the surface roughness (Ra) from $0.9{\mu}m$ to $0.1{\mu}m$ and increases the corrosion resistance in rating number (RN) from 5 to 9.5. Our study shows that an optimal oxide film can be obtained with a pulse voltage of 150 V, which produces an excellent coating on the AZ91D casting alloy.

유기물 박막에서 탄소 함량에 따라서 달라지는 분극의 변화에 따른 특성 변화에 대한 연구 (Study on the Characteristic due to the Various Polarity based on the Carbon Contents in Organic Thin Film)

  • 오데레사
    • 한국정보통신학회논문지
    • /
    • 제14권9호
    • /
    • pp.2065-2070
    • /
    • 2010
  • 유기박막 반도체 소자에서 주로 보호막으로 사용되는 PMMA 코팅 박막의 특성에 대하여 FTIR 분석법을 이용하여 조사하였다. 희석된 PMMA 혼합액은 비율에 따라서 $SiO_2$ 박막의 표면을 친수성, 소수성 혹은 하이브리드 특성으로 변화시켰다. FTIR 분석에 의하여 탄소의 함량이 적은 샘플 7에서 화학적인 변화가 크게 일어나는 것을 확인하였다. 전자를 많이 포함한 소량의 탄소가 $SiO_2$ 박막의 분극성을 감소시키고 박막의 표면에너지를 감소시켜서 화학적으로 안정된 박막의 표면을 형성하여 누설전류가 감소되었다. FTIR 분석은 유기화합물 박막에서 일어나는 화학적 변화에 대하여 미세한 부분까지 측정할 수 있는 척도로서 유용한 분석 방법임을 확인하였다.

4H-SiC Planar MESFET for Microwave Power Device Applications

  • Na, Hoon-Joo;Jung, Sang-Yong;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Song, Ho-Keun;Lee, Jae-Bin;Kim, Hyeong-Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권2호
    • /
    • pp.113-119
    • /
    • 2005
  • 4H-SiC planar MESFETs were fabricated using ion-implantation on semi-insulating substrate without recess gate etching. A modified RCA method was used to clean the substrate before each procedure. A thin, thermal oxide layer was grown to passivate the surface and then a thick field oxide was deposited by CVD. The fabricated MESFET showed good contact properties and DC/RF performances. The maximum oscillation frequency of 34 GHz and the cut-off frequency of 9.3 GHz were obtained. The power gain was 10.1 dB and the output power of 1.4 W was obtained for 1 mm-gate length device at 2 GHz. The fabricated MESFETs showed the charge trapping-free characteristics and were characterized by the extracted small-signal equivalent circuit parameters.

H2O2 산화제가 W/Ti 박막의 전기화학적 분극특성 및 CMP 성능에 미치는 영향 (Electrochemical Polarization Characteristics and Effect of the CMP Performances of Tungsten and Titanium Film by H2O2 Oxidizer)

  • 나은영;서용진;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.515-520
    • /
    • 2005
  • CMP(chemical mechanical polishing) process has been attracted as an essential technology of multi-level interconnection. Also CMP process got into key process for global planarization in the chip manufacturing process. In this study, potentiodynamic polarization was carried out to investigate the influences of $H_2O_2$ concentration and metal oxide formation through the passivation on tungsten and titanium. Fortunately, the electrochemical behaviors of tungsten and titanium are similar, an one may expect. As an experimental result, electrochemical corrosion of the $5\;vol\%\;H_2O_2$ concentration of tungsten and titanium films was higher than the other concentrations. According to the analysis, the oxidation state and microstructure of surface layer were strongly influenced by different oxidizer concentration. Moreover, the oxidation kinetics and resulting chemical state of oxide layer played critical roles in determining the overall CMP performance. Therefore, we conclude that the CMP characteristics tungsten and titanium metal layer including surface roughness were strongly dependent on the amounts of hydrogen peroxide oxidizer.

One- and Two-Dimensional Arrangement of DNA-Templated Gold Nanoparticle Chains using Plasma Ashing Method

  • Kim, Hyung-Jin;Hong, Byung-You
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.291-291
    • /
    • 2010
  • Electron-beam lithography (EBL) process is a versatile tool for a fabrication of nanostructures, nano-gap electrodes or molecular arrays and its application to nano-device. However, it is not appropriate for the fabrication of sub-5 nm features and high-aspect-ratio nanostructures due to the limitation of EBL resolution. In this study, the precision assembly and alignment of DNA molecule was demonstrated using sub-5 nm nanostructures formed by a combination of conventional electron-beam lithography (EBL) and plasma ashing processes. The ma-N2401 (EBL-negative tone resist) nanostructures were patterned by EBL process at a dose of $200\;{\mu}C/cm2$ with 25 kV and then were ashed by a chemical dry etcher at microwave (${\mu}W$) power of 50 W. We confirmed that this method was useful for sub-5 nm patterning of high-aspect-ratio nanostructures. In addition, we also utilized the surface-patterning technique to create the molecular pattern comprised 3-(aminopropyl) triethoxysilane (APS) as adhesion layer and octadecyltrichlorosilane (OTS) as passivation layer. DNA-templated gold nanoparticle chain was attached only on the sub-5 nm APS region defined by the amine groups, but not on surface of the OTS region. We were able to obtain DNA molecules aligned selectively on a SiO2/Si substrate using atomic force microscopy (AFM).

  • PDF

Condensable InP Quantum Dot Solids

  • Tung, Dao Duy;Dung, Mai Xuan;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.541-541
    • /
    • 2012
  • InP quantum dots capped by myristic acid (InP-MA QDs) were synthesized by a typical hot injection method using MA as stablizing agent. The current density across the InP-MA QDs thin film which was fabricated by spin-coating method is about $10^{-4}A/cm^2$ at the electric field of 0.1 MV/cm from I-V measurement on a metal-insulator-metal (MIM) device. The low conductivity of the InP-MA QDs thin film is interpreted as due to the long interdistances among the dots governed by the MA molecules. Therefore, replacing the MA with thioacetic acid (TAA) by biphasic ligand exchange was conducted in order to obtain TAA capped InP QDs (InP-TAA). InP-TAA QDs were designed due to: 1) the TAA is very short molecule; 2) the thiolate groups on the surface of the InP-TAA QDs are expected to undergo condensation reaction upon thermal annealing which connects the QDs within the QD thin film through a very short linker -S-; and 3) TAA provides better passivation to the QDs both in the solution and thin film states which minimizing the effect of surface trapping states.

  • PDF

XPS와 SIMS를 이용한 PSG/SiO2/Al-1%Si 적층 박막내의 Na 게터링 분석 (Analysis of the Na Gettering in PSG/SiO2/Al-1%Si Multilevel Thin Films using XPS and SIMS)

  • 김진영
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.467-471
    • /
    • 2016
  • In order to investigate the Na gettering, PSG/$SiO_2$/Al-1%Si multilevel thin films were fabricated. DC magnetron sputter techniques and APCVD (atmosphere pressure chemical vapor deposition) were utilized for the deposition of Al-1%Si thin films and PSG/$SiO_2$ passivations, respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS (secondary ion mass spectrometry) depth profiling and XPS (X-ray Photoelectron Spectroscopy) analysis were used to determine the distribution and binding energies of Na, Al, Si, O, P and other elements throughout the PSG/$SiO_2$/Al-1%Si multilevel thin films. Na peaks were mainly observed at the the PSG/$SiO_2$ interface and at the $SiO_2$/Al-1%Si interfaces. Na impurity gettering in PSG/$SiO_2$/Al-1%Si multilevel thin films is considered to be caused by a segregation type of gettering. The chemical state of Si and O elements in PSG passivation appears to be $SiO_2$.

실리콘 웨이퍼 비저항에 따른 Dopant-Free Silicon Heterojunction 태양전지 특성 연구 (The Influence of the Wafer Resistivity for Dopant-Free Silicon Heterojunction Solar Cell)

  • 김성해;이정호
    • 한국표면공학회지
    • /
    • 제51권3호
    • /
    • pp.185-190
    • /
    • 2018
  • Dopant-free silicon heterojunction solar cells using Transition Metal Oxide(TMO) such as Molybdenum Oxide($MoO_X$) and Vanadium Oxide($V_2O_X$) have been focused on to increase the work function of TMO in order to maximize the work function difference between TMO and n-Si for a high-efficiency solar cell. One another way to increase the work function difference is to control the silicon wafer resistivity. In this paper, dopant-free silicon heterojunction solar cells were fabricated using the wafer with the various resistivity and analyzed to understand the effect of n-Si work function. As a result, it is shown that the high passivation and junction quality when $V_2O_X$ deposited on the wafer with low work function compared to the high work function wafer, inducing the increase of higher collection probability, especially at long wavelength region. the solar cell efficiency of 15.28% was measured in low work function wafer, which is 34% higher value than the high work function solar cells.

수소 첨가에 의한 비정질 ITO 박막의 기계적 특성 연구 (Effect of Hydrogen on Mechanical S tability of Amorphous In-Sn-O thin films for flexible electronics)

  • 김서한;송풍근
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.56-56
    • /
    • 2018
  • Transparent conductive oxides (TCOs) have attracted attention due to their high electrical conductivity and optical transparency in the visible region. Consequently, TCOs have been widely used as electrode materials in various electronic devices such as flat panel displays and solar cells. Previous studies on TCOs focused on their electrical and optical performances; there have been numerous attempts to improve these properties, such as chemical doping and crystallinity enhancement. Recently, due to rapidly increasing demand for flexible electronics, the academic interest in the mechanical stability of materials has come to the fore as a major issue. In particular, long-term stability under bending is a crucial requirement for flexible electrodes; however, research on this feature is still in the nascent stage. Hydrogen-incorporated amorphous In-Sn-O (a-ITO) thin films were fabricated by introducing hydrogen gas during deposition. The hydrogen concentration in the film was determined by secondary ion mass spectrometry and was found to vary from $4.7{\times}10^{20}$ to $8.1{\times}10^{20}cm^{-3}$ with increasing $H_2$ flow rate. The mechanical stability of the a-ITO thin films dramatically improved because of hydrogen incorporation, without any observable degradation in their electrical or optical properties. With increasing hydrogen concentration, the compressive residual stress gradually decreased and the subgap absorption at around 3.1 eV was suppressed. Considering that the residual stress and subgap absorption mainly originated from defects, hydrogen may be a promising candidate for defect passivation in flexible electronics.

  • PDF

RGB laser 를 이용한 온도에 따른 a-IGZO photo-response 분석 (Analysis of a-IGZO photoresponse using Red, Green and Blue Laser)

  • 김세윤;정연후;조광민;;김정주;이준형;허영우
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.110-111
    • /
    • 2014
  • RGB laser 를 이용하여 rf-magnetron sputtering 법으로 합성한 a-IGZO 박막의 photoresponse 를 관찰하였다. Air 분위기에서 red 파장을 조사 할 경우 비교적 slow recovery 특성을 보였으며, green 과 blue 파장을 조사 할 경우 red 보다 fast recovery 특성을 나타내었다. 그러나 진공에서 측정할 경우, red 파장에서는 recovery 가 빨라졌으며, green 과 blue 파장의 경우 recovery 가 매우 느려짐을 확인하였다. 이는 passivation 을 하지 않은 소자의 oxygen gas 의 흡/탈착 때문으로 예상할 수 있었으며, red 파장이 gas 탈착에 기여하는 정도가 매우 작고, green 과 blue 파장이 gas 탈착에 기여하는 정도가 매우 크기 때문인 것으로 생각할 수 있었다. 온도를 증가시킬 경우, 모든 경우에서 recovery 가 빠르게 나타났는데 이는 흡/탈착에 필요한 barrier 및 $V_o{^{2+}}$에서 Vo 로 돌아오기 위한 barrier 를 쉽게 넘어갈 수 있기 때문으로 이해 할 수 있었다. 이러한 결과를 stretched exponential equation 을 이용하여 해석하였으며 수치화 하였다.

  • PDF