• 제목/요약/키워드: Surface Imaging

검색결과 1,120건 처리시간 0.026초

Dip-pen nanolithography를 위한 이중 팁을 가진 질화규소 프로브의 설계 및 제조 (Design and Fabrication of Dual Tip Si3N4 Probe for Dip-pen Nanolithograpy)

  • 김경호;한윤수
    • 한국표면공학회지
    • /
    • 제47권6호
    • /
    • pp.362-367
    • /
    • 2014
  • We report the design, fabrication of a $Si_3N_4$ probe and calculation of its mechanical properties for DPN(dip pen nanolithography), which consists of dual tips. Concept of dual tip probe is to employ individual tips on probe as either an AFM tip for imaging or a writing tip for nano patterning. For this, the dual tip probe is fabricated using low residual stress $Si_3N_4$ material with LPCVD deposition and MEMS fabrication process. On the basis of FEM analysis we show that the functionality of dual tip probe for imaging is dependent on the dimensions of dual tip probe, and high ratio of widths of beam areas is preferred to minimize curvature variation on probe.

Biological applications of the NanoSuit for electron imaging and X-microanalysis of insulating specimens

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.4.1-4.11
    • /
    • 2022
  • Field emission scanning electron microscopy (FESEM) is an essential tool for observing surface details of specimens in a high vacuum. A series of specimen procedures precludes the observations of living organisms, resulting in artifacts. To overcome these problems, Takahiko Hariyama and his colleagues proposed the concept of the "nanosuit" later referred to as "NanoSuit", describing a thin polymer layer placed on organisms to protect them in a high vacuum in 2013. The NanoSuit is formed rapidly by (i) electron beam irradiation, (ii) plasma irradiation, (iii) Tween 20 solution immersion, and (iv) surface shield enhancer (SSE) solution immersion. Without chemical fixation and metal coating, the NanoSuit-formed specimens allowed structural preservation and accurate element detection of insulating, wet specimens at high spatial resolution. NanoSuit-formed larvae were able to resume normal growth following FESEM observation. The method has been employed to observe unfixed and uncoated bacteria, multicellular organisms, and paraffin sections. These results suggest that the NanoSuit can be applied to prolong life in vacuo and overcome the limit of dead imaging of electron microscopy.

주사형 맥스웰 응력 현미경을 이용한 박막의 Nanometer-scale 이미지 (Nanometer-scale Imaging in Thin Films by Scanning Maxwell-stress Microscopy)

  • 신훈규;유승엽;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.133-136
    • /
    • 1998
  • The scanning Maxwell-stress microscopy (SMM) is a dynamic noncontact electric force microscopy that allows simultaneous access to the electrical properties of molecular system such as surface potential, surface charge, dielectric constant and conductivity along with the topography. Here we report our recent results of its application to nanoscopic study of domain structures and electrical functionality in organic thin films prepared by the Langmuir-Blodgett technique.

  • PDF

Polymeric nanoparticles as dual-imaging probes for cancer management

  • Menon, Jyothi U.;Jadeja, Parth;Tambe, Pranjali;Thakore, Dheeraj;Zhang, Shanrong;Takahashi, Masaya;Xie, Zhiwei;Yang, Jian;Nguyen, Kytai T.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권3호
    • /
    • pp.129-140
    • /
    • 2016
  • This article reports the development of biodegradable photoluminescent polymer (BPLP)-based nanoparticles (NPs) incorporating either magnetic nanoparticles (BPLP-MNPs) or gadopentate dimeglumine (BPLP-Gd NPs), for cancer diagnosis and treatment. The aim of the study is to compare these nanoparticles in terms of their surface properties, fluorescence intensities, MR imaging capabilities, and in vitro characteristics to choose the most promising dual-imaging nanoprobe. Results indicate that BPLP-MNPs and BPLP-Gd NPs had a size of $195{\pm}43nm$ and $161{\pm}55nm$, respectively and showed good stability in DI water and 10% serum for 5 days. BPLP-Gd NPs showed similar fluorescence as the original BPLP materials under UV light, whereas BPLP-MNPs showed comparatively less fluorescence. VSM and MRI confirmed that the NPs retained their magnetic properties following encapsulation within BPLP. Further, in vitro studies using HPV-7 immortalized prostate epithelial cells and human dermal fibroblasts (HDFs) showed > 70% cell viability up to $100{\mu}g/ml$ NP concentration. Dose-dependent uptake of both types of NPs by PC3 and LNCaP prostate cancer cells was also observed. Thus, our results indicate that BPLP-Gd NPs would be more appropriate for use as a dual-imaging probe as the contrast agent does not mask the fluorescence of the polymer. Future studies would involve in vivo imaging following administration of BPLP-Gd NPs for biomedical applications including cancer detection.

Feasibility of Three-Dimensional Balanced Steady-State Free Precession Cine Magnetic Resonance Imaging Combined with an Image Denoising Technique to Evaluate Cardiac Function in Children with Repaired Tetralogy of Fallot

  • YaFeng Peng;XinYu Su;LiWei Hu;Qian Wang;RongZhen Ouyang;AiMin Sun;Chen Guo;XiaoFen Yao;Yong Zhang;LiJia Wang;YuMin Zhong
    • Korean Journal of Radiology
    • /
    • 제22권9호
    • /
    • pp.1525-1536
    • /
    • 2021
  • Objective: To investigate the feasibility of cine three-dimensional (3D) balanced steady-state free precession (b-SSFP) imaging combined with a non-local means (NLM) algorithm for image denoising in evaluating cardiac function in children with repaired tetralogy of Fallot (rTOF). Materials and Methods: Thirty-five patients with rTOF (mean age, 12 years; range, 7-18 years) were enrolled to undergo cardiac cine image acquisition, including two-dimensional (2D) b-SSFP, 3D b-SSFP, and 3D b-SSFP combined with NLM. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) of the two ventricles were measured and indexed by body surface index. Acquisition time and image quality were recorded and compared among the three imaging sequences. Results: 3D b-SSFP with denoising vs. 2D b-SSFP had high correlation coefficients for EDV, ESV, SV, and EF of the left (0.959-0.991; p < 0.001) as well as right (0.755-0.965; p < 0.001) ventricular metrics. The image acquisition time ± standard deviation (SD) was 25.1 ± 2.4 seconds for 3D b-SSFP compared with 277.6 ± 0.7 seconds for 2D b-SSFP, indicating a significantly shorter time with the 3D than the 2D sequence (p < 0.001). Image quality score was better with 3D b-SSFP combined with denoising than with 3D b-SSFP (mean ± SD, 3.8 ± 0.6 vs. 3.5 ± 0.6; p = 0.005). Signal-to-noise ratios for blood and myocardium as well as contrast between blood and myocardium were higher for 3D b-SSFP combined with denoising than for 3D b-SSFP (p < 0.05 for all but septal myocardium). Conclusion: The 3D b-SSFP sequence can significantly reduce acquisition time compared to the 2D b-SSFP sequence for cine imaging in the evaluation of ventricular function in children with rTOF, and its quality can be further improved by combining it with an NLM denoising method.

BBF를 이용한 적은 수의 MRI 이미지로부터 3차원 조직 재구성 (3D Reconstruction of Tissue from a few of MRI Images using Radial Basis Function)

  • 신영석;김형석
    • 한국정보통신학회논문지
    • /
    • 제12권11호
    • /
    • pp.2077-2082
    • /
    • 2008
  • 최근 MRI와 CT와 같은 의료영상에서의 진보한 기술은 의사들에게 상세한 해부학적 정보를 제공하게 하여 그들의 진단 능력을 향상시키고 있다. 일반적으로 보다 상세한 정보를 얻기 위해서는 많은 수의 MRI이미지를 필요로 한다. 그러나 일반 병원에서 접하는 MRI 기계의 성능이 우수하지 않은 경우가 많고 따라서 획득되는 이미지의 수가 적다. 결과적으로 적은 수의 슬라이스를 이용해 3D surface를 재구성하게 되면 퀄리티가 낮아지는 문제가 발생한다. 본 논문에서는 적은 수의 슬라이스를 이용하여 높은 퀄리티의 3D surface를 얻는 방법을 제안한다. 이를 위한 알고리즘은 먼저 원하는 영역의 경계를 찾아서 그 경계선들의 점을 찾는다. 이러한 점들로부터 Radial Basis Function을 이용해서 점들을 모두 지나는 음함수 곡면 수식을 생성한다. 생성된 음함수 곡면수식으로부터 Marching cube 알고리즘을 이용하여 렌더링 한다.

측두하악관절의 초음파영상과 자기공명영상에서 하악과두 외측면과 관절낭간 거리 측정치 비교 (Comparison of the capsular width measured on ultrasonogrape and MR image of the temporomandibular joint)

  • 이태완;유동수;한원정;김은경
    • Imaging Science in Dentistry
    • /
    • 제36권1호
    • /
    • pp.41-48
    • /
    • 2006
  • Purpose : To evaluate the reliability and clinical usefulness of ultrasonography in the temporomandibular joint (TMJ). Materials and Methods : Parasagittal and paracoronal 1.5 T MR images and 7.5 MHz ultrasonographs of 40 TMJs in 20 asymptomatic volunteers were obtained. Disc position using MR imaging was evaluated and the distance between the lateral surface of mandibular condyle and the articular capsule using MR image and ultrasonograph of 27 TMJs with normal disc position was measured and compared. Intraobserver and interobserver measurements reliability was evaluated by using interclass correlation coefficients (ICC) and measurement error. Also, the distance measured on ultrasonographs was compared, according to mouth position and disc postion. Results : The normal disc position was found in 27 of 40 asymptomatic joints. At the intraobserver reliability of measurement, ICC at the closed and open mouth position were 0.89 and 0.91. The measurement error was 0.4% and 0.5%. At the interobserver reliability, ICC at the closed and open mouth position were 0.92 and 0.81. The measurement error was 0.4% and 0.7%. At the TMJ with normal disc position, the distances between the lateral surface of mandibular condyle and the articular capsule measured on MR images and ultrasonographs were $2.0{\pm}0.7mm,\;1.8{\pm}0.5mm$, respectively (p<0.05). On the ultrasonographs, the distances at open mouth position were $1.2{\pm}0.5mm$ (p<0.05). At the TMJ with medially displaced disc, the distances at the closed and open mouth position were $1.3{\pm}0.3\;mm\;and\;0.9{\pm}0.2\;mm$ (p<0.05). Conclusion : The results suggest ultrasonography of TMJ is a reliable imaging technique for assessment of normal disc position.

  • PDF

열적외선 기기와 3차원 레이저 스캐너를 이용한 암석 표면의 풍화강도 분석 (Analysis The Intensity of Weathering of The Rock Surface Using 3D Terrestrial Laser Scanner and Thermal Infrared Instrument)

  • 이수곤;조항교;쉬징
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1324-1333
    • /
    • 2010
  • This paper is used in a recent civil engineering field in three-dimensional laser-meter tiles using thermal imaging cameras for the weathered rock slopes precisely measured indirectly, to the degree that began in the will. In the field is difficult to access the degree of weathering of the rock slope to the existing direct way to compensate for the shortcomings of 3D Terrestrial Laser Scanner and weathering characteristics of rocks using thermal imaging cameras to get the information to analyze the degree of rock weathering is. Intensity of 3D TLS and the thermal camera with image analysis to analyze the degree of weathering of bedrock in the field of core drilling targeting indoor laboratory tests were analyzed through the study. Granite, gneiss, sandstone, much of the cancerous samples, each experiment has a 40 per category, each of which 30 were used to analyze the data collected. That degree of rock weathering, the rock, depending on the strength of the Intensity values can change, depending on the level of thermal imaging camera, also weathered the changes in temperature could see. Intensity is the strength of weak rocks, the more value decrease, the temperature of the thermal imaging camera through the swell Intensity and notice that the temperature had an inverse relationship. Intensity value of the low strength of weak rock, but the value came out of the rocks have been proved to be largely dependent on the contrast. The contrast of the surface rocks are weathered dark Intensity values lower temperature to swell the contrary, the degree of weathering can be distinguished.

  • PDF