• 제목/요약/키워드: Surface Hardness

검색결과 2,504건 처리시간 0.032초

탄소강의 가공조건과 마찰.마멸과의 관계 (Effect of Machining Condition on Friction and Wear of Steel)

  • 정종현;김대은
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1468-1476
    • /
    • 1996
  • Surface integrity is dictated by the fabrication process of the metal part. In this work, steel specimens were prepared under various mechine conditions to achieve different degrees of deformation state. The tribological characteristics of the speciments were tested using a pin-on-disk type apparatus and other surface characterization tools. It is shown that though frictional characteristics are similar, the wear rate is significantrly affected by the properties of the surface. In the case of steel, surface cracks resulted in high wear despite the relatively high hardness of the specimen. Also, the sliding action were found to reduce the residual stress on the surface. These results indicate that there is a strong relationship between surface integrity and the tribological properties of steel, and therefore the machining condition should be optimized woth respect to tribological performance of a steel part.

ALBC3 합금의 해수 내 전기화학적 특성에 미치는 쇼트피닝 분사압력의 영향 (Effects of Shot Peening Projection Pressure on Electrochemical Characteristics of ALBC3 Alloy in Seawater)

  • 한민수;임명환;김성종
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.25-32
    • /
    • 2014
  • The effects of shot peening pressure on electrochemical and surface morphological characteristics of ALBC3 alloy were investigated in this work. The surface hardness of ALBC3 alloy was improved by shot peening process under all shot peening pressures between 2 and 5 bar, and the hight value of surface hardness was observed to be about 420 Hv at 4 bar of the shot peening pressure. The shot peened surface presented very rough surface due to shot ball collision. The result of anodic potentiodynamic polarization in seawater revealed that there is no significant difference between the shot peened and non-shot peened specimen in terms of corrosion characteristics. Therefore, the optimum projection pressure is determined to be 4 bar.

마루바닥재용 자외선 경화형 에폭시 아크릴레이트 도료의 열안정성과 표면경도 (Thermal Stability and Surface Hardnes of UV-curable Epoxy Acrylate Coatings for Wooden Flooring)

  • 황현득;최재훈;문제익;김현중
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권6호
    • /
    • pp.121-129
    • /
    • 2008
  • 고경도, 고광택, 고내마모성 및 고내산성 등의 물성이 요구되는 마루바닥재의 상도용 도료로는 물성이 우수하면서도 환경친화적인 자외선경화형 도료가 많이 사용되고 있다. 그 중에서도 특히 에폭시 아크릴레이트계의 올리고머는 높은 열안정성과 속경화 특성으로 인하여 목재내장재의 도료로써 많이 사용되고 있다. 본 연구에서는 아크릴레이트 관능기 수가 자외선 경화형 에폭시 아크릴레이트 도료의 열안정성 및 표면경도에 미치는 영향을 분석하고자 하였다. 조성분을 이루는 모노머, 올리고머, 광개시제 각각의 열분해 거동 및 아크릴레이트 관능기수가 달리 배합된 에폭시 아크릴레이트 도료의 열안정성을 열중량분석기(TGA)를 사용하여 평가하였으며, 열안정성과 물리적 물성과의 관계를 확인하기 위하여 진자경도계를 이용하여 표면경도를 측정하였다. 경화 전 후의 열분해 거동 및 표면경도를 비교한 결과, 자외선 경화 중에 발생하는 가교에 의해 도막의 열안정성이 부여되며, 관능기의 수가 많아짐에 따라 열안정성뿐만 아니라 표면경도도 향상됨을 확인하였다.

Effects of Gas Flow Ratio on the Properties of Tool Steel Treated by a Direct Current Flasma Nitriding Process

  • Jang H. K.;Whang C. N.;Kim S. G.;Yu B. G.
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.202-206
    • /
    • 2005
  • Nitriding treatments were conducted on tool steel (SKD 61) at a temperature of $500^{\circ}C$ for 5 hr using high vacuum direct current (DC) plasma, with ammonia and argon as source gases. The structural and compositional changes produced in the nitrided layers by applying different ratios of Ar to $NH_{3}\;(n_{Ar}/n_{NH3}) were investigated using glancing x-ray diffraction (GXRD), optical microscopy, atomic force microscopy (AFM), micro-Vickers hardness testing, and pin-on-disc type tribometer. Nitriding case depths of around of $50{\mu}m$ were produced, varying slightly with different ratios of $n_{Ar}/n_{NH3}. It was found that the specimen surface hardness was 1150 Hv with $n_{Ar}/n_{NH3}=1, increasing to a maximum value of 1500 Hv with $n_{Ar}/n_{NH3}=5. With a further increase in ratio to $n_{Ar}/n_{NH3}=10, the surface hardness of the specimen reduced slightly to a value of 1370 Hv. These phenomena were caused by changes of the crystallographic structure of the nitride layers, i.e the $\gamma'-Fe_{4}N$ phase only was observed in the sample treated with $n_{Ar}/n_{NH3}$=1, and the intensity of the $\gamma'-Fe_{4}N$ phase were reduced but new phase of $\varepsilon'-Fe_{3}N$, which was known as a high hardness, with increasing $n_{Ar}/n_{NH3}. Also, the relative weight loss of counterface of the pin-on-disc with unnitrided steel was 0.2. And that of nitrided steel at a gas mixture ($n_{Ar}/n_{NH3}) of 1, 5, 7, and 10 was 0.4, 0.7, 0.6, and 0.5 mg, respectively. This means that the wear resistance of the nitrided samples could be increased by a factor of 2 at least than that of unnitrided steel.

전해액 중 Sodium silicate의 농도에 따라 양극 산화된 AZ31B 마그네슘 합금 양극 피막의 특성 평가 (Characteristic Evaluation of Anodic Film Depending on the Concentration of Sodium Silicate in the Electrolyte Anodized AZ31B Magnesium Alloy)

  • 이동길;김용환;박현;정우창;정원섭
    • 한국표면공학회지
    • /
    • 제42권3호
    • /
    • pp.109-115
    • /
    • 2009
  • Magnesium is one of the lightest metals, and magnesium alloys have excellent physical and mechanical properties such as high stiffness/weight ratios, good castability, good vibration and shock absorption. However their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To improve these defects, many techniques are developed. Micro arc oxidation(MAO) is a one of the surface treatments under anodic oxidation in which ceramic coating is directly formed on the surface of magnesium alloy. In this study, the characteristics of anodic film were examined after coating the AZ31B magnesium alloy through the MAO process. MAO was carried out in potassium hydroxide, potassium fluoride, and various concentration of sodium silicate in electrolyte. The morphology and chemical composition of the coating layer were characterized by SEM, XRD, EPMA and EDS. The hardness of anodic films was measured by micro-vickers hardness tester. As a result, the morphology and composition of anodic film were changed by concentration of sodium silicate. Thickness and Si composition of anodic film was increased with increasing concentration of sodium silicate in electrolyte. The hardness of anodic film was highly increased when the concentration of sodium silicate was above 40 g/l in electrolyte.

Ni-Pd 합금 전해도금의 특성에 관한 연구 (A Study on Characteristics of the Ni-Pd Alloy Electroplating)

  • 조은상;정대곤;조진기
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.253-259
    • /
    • 2015
  • The test equipment becomes more important with the development of semiconductor industry. MEMS probe is an important testing component to detect the defects from the generated electric signal when it contacts the metal pad of semiconductor devices. Ni-Pd alloy has been paid attention to as a candidate of MEMS probe material because of its high surface hardness and relatively low resistivity. In this study, electroplated Ni-Pd alloy has been prepared by using ethylene diamine as a complexing agent. Solid solution alloy coating could be formed when concentration of palladium chloride and current density were in the ranges of 1~5 mM and $0.2{\sim}1.5A/dm^2$, respectively. The increase of current density brought about an decrease in palladium content, which made both of lattice parameter and grain size smaller. As a result of grain refinement, high hardness could be obtained. However, surface cracking was observed due to residual stress when the current density was above $1.3A/dm^2$. When effects of heat treatment temperature on hardness and sheet resistance were investigated, the accompanied grain growth decreased both of them. The decrease of hardness remained stable at a temperature of $200^{\circ}C$. The sheet resistance was drastically reduced at $100^{\circ}C$. After that, it was found to become constant.

Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CAD-CAM milled interim prosthodontic materials after thermocycling

  • Mesut Yildirim;Filiz Aykent;Mahmut Sertac Ozdogan
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권2호
    • /
    • pp.115-125
    • /
    • 2024
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture resistance, surface hardness, and color stain of 3D printed, CAD-CAM milled, and conventional interim materials. MATERIALS AND METHODS. A total of 80 specimens were fabricated from auto polymerizing polymethyl methacrylate (PMMA), bis-acryl composite resin, CAD-CAM polymethyl methacrylate resin (milled), and 3D printed composite resin (printed) (n = 20). Forty of them were crown-shaped, on which fracture strength test was performed (n = 10). The others were disc-shaped specimens (10 mm × 2 mm) and divided into two groups for surface hardness and color stainability tests before and after thermal cycling in coffee solution (n = 10). Color parameters were measured with a spectrophotometer before and after each storage period, and color differences (CIEDE2000 [DE00]) were calculated. The distribution of variables was measured with the Kolmogorov Smirnov test, and one-way analysis of variance (ANOVA), Tukey HSD, Kruskal-Wallis, Mann-Whitney U tests were used in the analysis of quantitative independent data. Paired sample t-test was used in the analysis of dependent quantitative data (P < .05). RESULTS. The highest crown fracture resistance values were determined for the 3D printed composite resin (P < .05), and the lowest were observed in the bis-acryl composite resin (P < .05). Before and after thermal cycling, increase in mean hardness values were observed only in 3D printed composite resin (P < .05) and the highest ΔE00 value were observed in PMMA resin for all materials (P < .05). CONCLUSION. 3D printing and CAD-CAM milled interim materials showed better fracture strength. After the coffee thermal cycle, the highest surface hardness value was again found in 3D printing and CAD-CAM milled interim samples and the color change of the bis-acryl resin-based samples and the additive production technique was higher than the PMMA resin and CAD-CAM milled resin samples.

수종의 치과용 불소화합물의 물리적 조건에 따른 치질강화에 미치는 영향 (Enamel strengthening effect of the dental fluoride compound)

  • 김주원;이정애;이가연
    • 한국치위생학회지
    • /
    • 제10권4호
    • /
    • pp.757-764
    • /
    • 2010
  • Objectives : The fluoride coating for caries prevention and strengthen enamel use NaF(sodium fluoride, Junsei Chemical Co., Ltd, Japan) 2% gel, SnF2(stannous fluoride, SIGMA-ALDRICH Gmbh, USA)8% gel and APF(acidulated phosphate fluoride, Sultan health care, USA) 1.23% gel. Methods : After put the enamel piece in these fluoride compound gel, we observed density level. And after measuring the vickers hardness, Got the following conclusions. Results : 1. After settling in the APF 1.23% during 6 days, we observed high density level of enamel surface using 250 magnification scanning microscope. The vacuum of surface packed (in) like sardines. 2. After settling in the APF 1.23% during 6 days, we observed reducing the space between the cluster of enamel surface using 50,000 magnification scanning microscope. 3. The vickers hardness change was very much on the all kinds of fluoride compound gel[2% NaF(sodium fluoride)gel, 8% SnF2(stannous fluoride) gel, 1.23% APF(acidulated phosphate fluoride)gel]. It's all because of reducing the space between the cluster of enamel surface(p<0.001). Conclusions : The vickers hardness change was very much on the all kinds of fluoride compound. It's all because of reducing the space between the cluster of enamel surface.

Na$_2$B$_4$O$_7$-KCl-LiCl 혼합용융욕에서 TiAl계 금속간 화합물의 전해붕화처리 (Electrolytic Boronzing on TiAl-based Intermetallic Compounds in Fused Salt of Borax, Potassium Chloride and Lithium Chloride Mixture)

  • 이두환;김익범;이주호;김수식
    • 한국표면공학회지
    • /
    • 제31권6호
    • /
    • pp.359-370
    • /
    • 1998
  • TiAl-based intermetallic compounds were electro-bornizel in the mixture of $Na_2B_4O_7$, KCL and LiCl in the termetature rage between 850 and $1000^{\circ}C$for various times (1-5 hours)under the fixed current density of 0.5 A/$cm^2$. The optimized composition of electrolyte in this work was decided to be 76.9 wt% $Na_2B_4O_7$-19.2 wt.%(0.7KCl-0.3LiCl) -3.9 wt.% al. The samples with boronized layer were investigated by SEM, XRD and EDS. The surface micro-hardness of boronized TiAl was also evaluated using Micro Vickers Hardness Tester. The sample, boronized at $900^{\circ}C$ for 4 hours in the above composition of electrolyte under the current density of 0.5 A/$\textrm{cm}^2$, has about 36$\mu\textrm{m}$ think layer on the surface, and its surface micro-hardness was measured to be 1263 Hv. From the results of SEM, XRD and EDS, the layer consisted of $TiB_2$ sublayer and Al-oxide sub layer. Al-depleted layer below the Al-oxide sudlayer was also detected. The activation energy for formation of boronized layer in this study was calculated as 178 Kcal/moleK.

  • PDF

표면 경화 처리된 Al, Ti의 고속 충격 저항성에 관한 연구 (A Study on the resistance of surface hardening treated Aluminum, Titanium alloy under the high velocity impact)

  • 손세원;김희재;홍성희;김영태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.852-855
    • /
    • 2002
  • In order to investigate the fracture behaviors(penetration modes) and resistance to penetration during ballistic impact of surface hardening treated Aluminum, Titanium alloy laminates, ballistic tests were conducted. In this paper, Anodized Al 5083-H131 alloy laminates and nitrified Ti (Gr.2) alloy laminates were used to achieve higher surface hardness. Surface hardness test were conducted using a Micro victor's hardness tester and thickness of surface hardening treated specimens was measured by video microscope. Resistance to penetration is determined by the protection ballistic limit($V_50$), a statistical velocity with 50% probability far complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_50$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_50$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests.

  • PDF