• Title/Summary/Keyword: Surface Functionalization

Search Result 131, Processing Time 0.035 seconds

Modification of Carbon Nanotube for the Improvement of Dispersion and the Dispersion Characteristics of Carbon Nanotube in Polyurethane (분산성 향상을 위한 탄소나노튜브의 개질과 폴리우레탄과의 분산 특성)

  • Park, Kyung-Soon;Kim, Seung-Jin;Kim, Jeong-Hyun;Park, Jun-Hyeong;Kwon, Oh-Kyung
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • The thermal treatment for carbon nanotube was applied to remove the water, metal catalyst and other impurities in carbon nanotube. The surface of carbon nanotube was changed into open structure with acid treatment by mixed solution of $HNO_3$ and $H_2SO_4$. The dispersion property of the functionalized and modified carbon nanotube was assessed with naked eyes by dispersing it in DMF. Carbon nanotube mixd polyurethane film was made to estimate the dispersion property by reflectance of the film with UV-Vis spectrometer. Also the internal structure of carbon nanotube was observed with SEM and TEM and thermal pyrolysis property of the carbon nanotube was measured by TGA and DSC. The surface modification of carbon nanotube by thermal and acid treatments improved the dispersion property of carbon nanotube/polyurethane mixed materials.

Fast and Soft Functionalization of Carbon Nanotube with -SO3H, -COOH, -OH Groups for Catalytic Hydrolysis of Cellulose to Glucose

  • Lusha, Qin;Lee, Sungho;Li, Oi Lun
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.3
    • /
    • pp.87-94
    • /
    • 2020
  • Herein, sulfonated carbon nanotubes (CNT) have been prepared in dilute sulfuric acid (H2SO4) via a novel sulfonation approach based on gas-liquid interfacial plasma (GLIP) at room temperature. The sulfonic acid groups and total acid groups densities of CNT after GLIP treatment in 2 M H2SO4 for 45 min can reach to 0.53 mmol/g and 3.64 mmol/g, which is higher than that of sulfonated CNT prepared under 0.5 M / 1 M H2SO4. The plasma sulfonated CNT has been applied as catalysts for the conversion of microcrystalline cellulose to glucose. The effect of hydrolysis temperature and hydrolysis time on the conversion rate and product distribution have been discussed. It demonstrates that the total conversion rate of cellulose increasing with hydrolysis temperature and hydrolysis time. Furthermore, the GLIP sulfonated CNT prepared in 2 M H2SO4 for 45 min has shown high catalytic stability of 85.73 % after three cycle use.

Dispersion of Highly Pure Single-Walled Carbon Nanotube in Aqueous Solution of Various Surfactants (다양한 계면활성제를 이용한 고순도 단일벽 탄소나노튜브의 수계 분산)

  • Goak, Jeung-Choon;Kim, Myoung-Su;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.153-153
    • /
    • 2008
  • Practical application of single-walled carbon nanotubes (SWCNTs) qualified as a promising material has been limited by either poor dispersion or their insolubility in aqueous or organic media due to formation of bundling by relatively high surface energy. Thus, major attention to overcome this issue has been paid at surface modification of CNTs by functionalization, but this introduces defects to the sidewall of CNTs, consequently perturbing the inherent electronic and optical properties. Therefore, using surfactants is a general approach to disperse SWCNTs with lower damages by which bundled nanotubes could be dispersed up to the level of individuals or small bundles. Here, we have investigated various surfactants for their efficiency in dissolving purified SWCNTs produced by arc discharge in deionized water. To compare the surfactants respectively, we have determined the least amount of each surfactant to suspend the nanotubes under optimized experimental conditions(CNT amount, sonication power, and centrifugation speed, etc.) set on the basis of the most common surfactant (sodium dodecyl sulfate, SDS) and discussed the qualitative and quantitative characterization of SWCNT dispersions by UV-Vis absorption spectroscopy. Quantitative aspect about nanotube dispersion was that in particular N-methyl-2-pyrrolidone (NMP) and sodium dodecylbenzene sulfonate (NaDDBS) were found to be effective in dispersing individual tubes.

  • PDF

Detection of Avidin Based on Rugate-structured Porous Silicon Interferometer

  • Koh, Young-Dae;Kim, Sung-Jin;Park, Jae-Hyun;Park, Cheol-Young;Cho, Sung-Dong;Woo, Hee-Gweon;Ko, Young-Chun;Sohn, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2083-2088
    • /
    • 2007
  • Biosensor based on rugate PSi interferometer for the detection of avidin has been described. Rugate PSi fabricated by applying a computer-generated pseudo-sinusoidal current waveform has been prepared for the application as a label-free biosensor based on porous silicon interferometer. The fabrication, optical characterization, and surface derivatization of a rugate PSi has been described. The method to fabricate biotinderivatized rugate PSi has been investigated. The surface and cross sectional morphology of rugate PSi are obtained with SEM. FT-IR spectroscopy is used to characterize the oxidation and functionalization reaction of rugate PSi sample. Binding of the avidin into the biotin-derivatized rugate PSi induces a change in refractive index. A red-shift of reflectivity by 18 nm in the reflectivity spectrum is observed, when the biotin-modified rugate PSi was exposed to a flow of avidin.

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien;Mubarak, N.M.;Yee, Min Juey;Yon, Lau Sie;Bing, Chua Han;Khalid, Mohammad;Abdullah, E.C.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.175-186
    • /
    • 2018
  • Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

Reduced Graphene Oxide Field-effect Transistor as a Transducer for Ion Sensing Application

  • Nguyen, T.N.T.;Tien, Nguyen Thanh;Trung, Tran Quang;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.562-562
    • /
    • 2012
  • Recently, graphene and graphene-based materials such as graphene oxide (GO) or reduced graphene oxide (R-GO) draws a great attention for electronic devices due to their structures of one atomic layer of carbon hexagon that have excellent mechanical, electrical, thermal, optical properties and very high specific surface area that can be high potential for chemical functionalization. R-GO is a promising candidate because it can be prepared with low-cost from solution process by chemical oxidation and exfoliation using strong acids and oxidants to produce graphene oxide (GO) and its subsequent reduction. R-GO has been used as semiconductor or conductor materials as well as sensing layer for bio-molecules or ions. In this work, reduced graphene oxide field-effect transistor (R-GO FET) has been fabricated with ITO extended gate structure that has sensing area on ITO extended gate part. R-GO FET device was encapsulated by tetratetracontane (TTC) layer using thermal evaporation. A thermal annealing process was carried out at $140^{\circ}C$ for 4 hours in the same thermal vacuum chamber to remove defects in R-GO film before deposition of TTC at $50^{\circ}C$ with thickness of 200 nm. As a result of this process, R-GO FET device has a very high stability and durability for months to serve as a transducer for sensing applications.

  • PDF

Synthesis, Dispersion, and Tribological Characteristics of Alkyl Functionalized Graphene Oxide Nanosheets for Oil-based Lubricant Additives (액체 윤활제 첨가제용 알킬 기능화된 산화 그래핀의 합성/분산 및 트라이볼로지적 특성)

  • Choe, Jin-Yeong;Kim, Yong-Jae;Lee, Chang-Seop
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.533-540
    • /
    • 2018
  • Graphene has been reported to be an excellent lubricant additive that reduces friction and wear when coated on the surface of various materials or when dispersed in lubricants as an atomic thin material with the low surface energy. In this study, alkyl functionalized graphene oxide (FGO) nanosheets for oil-based lubricant additives were prepared by using three types of alkyl chloride chemicals (butyl chloride, octyl chloride, and tetradecyl chloride). The chemical and structural properties of the synthesized FGOs were analyzed by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), and transmission electron microscope (TEM). The synthesized FGOs were dispersed at 0.02 wt% in PAO-0W40 oil and its tribological characteristics were investigated using a high frequency friction/wear tester. The friction coefficient and the wear track width of poly alpha olefin (PAO) oil added with FGO-14 were tested by a ball-on-disk method, and the measured results were reduced by ~5.88 and ~3.8%, respectively compared with those of the conventional PAO oil. Thus, it was found that the wear resistance of PAO oil was improved. In this study, we demonstrated the successful functionalization of GO as well as the improvement of dispersion stability and tribological characteristics of FGOs based on various alkyl chain lengths.

Preparation of Surface Functionalized Gold Nanoparticles and their Lateral Flow Immunoassay Applications (표면 개질된 금나노입자의 제조 및 이의 측방유동면역 센서 응용)

  • Kim, Dong Seok;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.97-102
    • /
    • 2018
  • In this work, the surface of gold nanoparticles (AuNPs) was modified with small molecules including mercaptoundecanoic acid (MUA) and L-lysine for the development of highly sensitive lateral flow (LF) sensors. Uniformly sized AuNps were synthesized by a modified Turkevich-Frens method, showing an average size of $16.7{\pm}2.1nm$. Functionalized AuNPs were then characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The stable conjugation of AuNPs and antibodies was obtained at pH 7.07 and the antibody concentration of $10{\mu}g/mL$. The functionalized AuNP-based LF sensor exhibited lower detection limit of 10 ng/mL for hepatitis B surface antigens than that of using the bare AuNP-based LF sensor (100 ng/mL).

Electrochemical Synthesis of Red Fluorescent Silicon Nanoparticles

  • Choi, Jonghoon;Kim, Kyobum;Han, Hyung-Seop;Hwang, Mintai P.;Lee, Kwan Hyi
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.35-38
    • /
    • 2014
  • Herein, we report on the preparation of red fluorescent Si nanoparticles stabilized with styrene. Nano-sized Si particles emit fluorescence under UV excitation, which could be used to open up new applications in the fields of optics and semi-conductor research. Unfortunately, conventional methods for the preparation of red fluorescent Si nanoparticles suffer from the lack of a fully-established standard synthesis protocol. A common initial approach during the preparation of semi-conductors is the etching of crystalline Si wafers in a HF/ethanol/$H_2O$ bath, which provides a uniformly-etched surface of nanopores amenable for further nano-sized modifications via tuning of various parameters. Subsequent sonication of the etched surface crumbles the pores on the wafer, resulting in the dispersion of particles into the solution. In this study, we use styrene to occupy these platforms to stabilize the surface. We determine that the liberated silicon particles in ethanol solution interact with styrene, resulting in the substitution of Si-H bonds with those of Si-C as determined via UV photo-catalysis. The synthesized styrene-coated Si nanoparticles exhibit a stable, bright, red fluorescence under excitation with a 365 nm UV light, and yield approximately 100 mg per wafer with a synthesis time of 2 h. We believe this protocol could be further expanded as a cost-effective and high-throughput standard method in the preparation of red fluorescent Si nanoparticles.

Recent progress on polydopamine surface chemistry (폴리도파민 표면화학: 발명 10 년의 이야기)

  • Eom, Soomin;Park, Hong Key;Park, Jihyo;Hong, Seonki;Lee, Haeshin
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2018
  • Polydopamine coating is one of the most straightforward and widely used method for surface modification inspired by adhesiveness of mussel foot protein contributed by co-existence of catechol and amine. This technique has been utilized not only in surface modification but other numerous fields of study as well. For the past decade, the subject of polydopamine has been thoroughly studied since the initial polydopamine research published in 2007, including its chemical structure, coating conditions, and material characteristics. In this study, we report the current trends and progress of polydopamine coating methods, the newly developing areas of polydopamine related research such as using dopamine derivatives and polyphenolic compounds, improvement of various functionalization and application of polydopamine coating, and explain the state of current attempts to discover the chemical mechanism, structure, and properties of polydopamine.