• Title/Summary/Keyword: Surface Fitting

Search Result 394, Processing Time 0.023 seconds

Investigation of O4 Air Mass Factor Sensitivity to Aerosol Peak Height Using UV-VIS Hyperspectral Synthetic Radiance in Various Measurement Conditions (UV-VIS 초분광 위성센서 모의복사휘도를 활용한 다양한 관측환경에서의 에어로솔 유효고도에 대한 O4 대기질량인자 민감도 조사)

  • Choi, Wonei;Lee, Hanlim;Choi, Chuluong;Lee, Yangwon;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.155-165
    • /
    • 2020
  • In this present study, the sensitivity of O4 Air Mass Factor (AMF) to Aerosol Peak Height (APH) has been investigated using radiative transfer model according to various parameters(wavelength (340 nm and 477 nm), aerosol type (smoke, dust, sulfate), aerosol optical depth (AOD), surface reflectance, solar zenith angle, and viewing zenith angle). In general, it was found that O4 AMF at 477 nm is more sensitive to APH than that at 340 nm and is stably retrieved with low spectral fitting error in Differential Optical Absorption Spectroscopy (DOAS) analysis. In high AOD condition, sensitivity of O4 AMF on APH tends to increase. O4 AMF at 340 nm decreased with increasing solar zenith angle. This dependency isthought to be induced by the decrease in length of the light path where O4 absorption occurs due to the shielding effect caused by Rayleigh and Mie scattering at high solar zenith angles above 40°. At 477 nm, as the solar zenith angle increased, multiple scattering caused by Rayleigh and Mie scattering partly leads to the increase of O4 AMF in nonlinear function. Based on synthetic radiance, APHs have been retrieved using O4 AMF. Additionally, the effect of AOD uncertainty on APH retrieval error has been investigated. Among three aerosol types, APH retrieval for sulfate type is found to have the largest APH retrieval error due to uncertainty of AOD. In the case of dust aerosol, it was found that the influence of AOD uncertainty is negligible. It indicates that aerosol types affect APH retrieval error since absorption scattering characteristics of each aerosol type are various.

Mathematical Modelling of Phenol Desorption from Spent Activated Carbon by Acetone (활성탄에 흡착된 페놀의 아세톤 탈착 모델에 대한 연구)

  • Kim, Seungdo;Oh, Young-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2115-2123
    • /
    • 2000
  • This research was designed to investigate the mathematical model and kinetics of phenol desorption from spent activated carbon. elucidating the desorption characteristics of phenol in the case of using acetone. The Freundlich isotherm constant ($k_e$) is expressed as a function of temperature: $k_e(T)=0.1exp(797.297/T)$. The Freundlich isotherm constant(n) is a weak temperature function and is rarely affected by temperature below $50^{\circ}C$. whereas it is necessary to correct the n value with respect to temperature above $100^{\circ}C$ owing to significant deviation (~5%). Based on the assumption that the surface desorption reaction of phenol is rate limiting, the desorption model was developed. Desorption reaction constant($k_d$) was determined by means of fitting the theoretical results best to experimental ones. The Arrhenius relationships for $k_d$ was expressed by: $k_d(sec^{-1})=0.0479{\cdot}exp(-3037/T)$. The model was verified by comparing the experimental ones under different reaction conditions with the theoretical results determined by the previously estimated $k_d$. Since the difference between them is with 5%, it is expected that the desorption model of this research seems to be appropriate to explain the desorption of phenol from activated carbon by acetone. According to studies of the model. regeneration time and ratio was estimated as a function of temperature under present conditions as follows: (1) regeneration time : ${\tau}_{reg}(hr)=-0.08130T_c+8.4775$. (2) regeneration ratio : ${\eta}(%)=0.2210T_c+83.745$. The regeneration time at 15, 55, and $100^{\circ}C$. respectively. was 7, 4.2, and 0.35 hours, whereas the regeneration ratio was 87. 96. and 99%. respectively. Also. studies of the model would make it possible to determine the regeneration time and ratio under other specific conditions (temperature, applied acetone volume, amount of activated carbon, and initially adsorbed phenol amount).

  • PDF

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.

Establishment of a Murine Model for Radiation-induced Bone Loss in Growing C3H/HeN Mice (성장기 마우스에서 방사선 유도 골소실 동물모델 확립)

  • Jang, Jong-Sik;Moon, Changjong;Kim, Jong-Choon;Bae, Chun-Sik;Kang, Seong-Soo;Jung, Uhee;Jo, Sung-Kee;Kim, Sung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2015
  • Bone changes are common sequela of irradiation in growing animal. The purpose of this study was to establish an experimental model of radiation-induced bone loss in growing mice using micro-computed tomography (${\mu}CT$). The extent of changes following 2 Gy gamma irradiation ($2Gy{\cdot}min^{-1}$) was studied at 4, 8 or 12 weeks after exposure. Mice that received 0.5, 1.0, 2.0 or 4.0 Gy of gamma-rays were examined 8 weeks after irradiation. Tibiae were analyzed using ${\mu}CT$. Serum alkaline phosphatase (ALP) and biomechanical properties were measured and the osteoclast surface was examined. A significant loss of trabecular bone in tibiae was evident 8 weeks after exposure. Measurements performed after irradiation showed a dose-related decrease in trabecular bone volume fraction (BV/TV) and bone mineral density (BMD), respectively. The best-fitting dose-response curves were linear-quadratic. Taking the controls into accounts, the lines of best fit were as follows: BV/TV (%) = $0.9584D^2-6.0168D+20.377$ ($r^2$ = 0.946, D = dose in Gy) and BMD ($mg{\cdot}cm^{-3}$) = $8.8115D^2-56.197D+194.41$ ($r^2$ = 0.999, D = dose in Gy). Body weight did not differ among the groups. No dose-dependent differences were apparent among the groups with regard to mechanical and anatomical properties of tibia, serum ALP and osteoclast activity. The findings provide the basis required for better understanding of the results that will be obtained in any further studies of radiation-induced bone responses.