• Title/Summary/Keyword: Surface Finish Technology

Search Result 147, Processing Time 0.021 seconds

Research on Ultra-precision Grinding Work of Silicon Carbide (실리콘 카바이드의 초정밀 연삭 가공에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.58-63
    • /
    • 2009
  • Silicon carbide (SiC) has been used for many engineering applications because of their high strength at high temperatures and high resistances to chemical degradation. SiC is very useful especially for a glass lens mold whose components demanded to the machining with good surface finish and low surface damage. The performance and reliability of optical components are strongly influenced by the surface damage of SiC during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified SiC glass lens mold. Usually the major form of damage in grinding of SiC is a crack occurs at surface and subsurface. The energy introduced in the layers close to the surface leads to the formation of these cracks. The experimental studies have been carried out to get optimum conditions for grinding of silicon carbide. To get the required qualified surface finish in grinding of SiC, the selection of type of the wheel is also important. Grinding processes of sintered SiC work-pieces is carried out with varying wheel type, depth of cut and feed using diamond wheel. The machining result of the surface roughness and the number of flaws, have been analyzed by use of surface profilers and SEM.

High speed machining using a NURBS interpolator (NURBS 보간을 이용한 고속 가공)

  • 이동윤;김현철;양민양;최인휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.323-328
    • /
    • 2004
  • Finish machining of a curved surface is often carried out by an NC system with curved interpolation in a high speed machining strategies. This study aims to develop the NURBS interpolator for the PC-NC based machine tools. In the case of a finish cut using a ball-end mill in high speed machining, low machinability at the bottom of a tool produces a harmful effect on surface roughness. The developed interpolator considers the relation between inclined angle, surface roughness, and feed rate, and adjusts real-time feed rate in order to generate surfaces which have isotropic surface roughness. The proposed interpolator is fully implemented and an experimental results are shown.

  • PDF

Influence of the Electrical Conductivity of Dielectric on WEDM of Sintered Carbide

  • Kim, Chang-Ho;Kruth, Jean-Pierre
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1676-1682
    • /
    • 2001
  • This work deals with the electrical conductivity of dielectric and cobalts percentage on output parameters such as metal removal rate and surface roughness value of sintered carbides cut by wire-electrical discharge machining (WEDM). To obtain a precise workpiece with good quality, some extra repetitive finish cuts along the rough cutting contour are necessary, Experimental results show that increases of cobalt amount in carbides affects the metal removal rate and worsens the surface quality as a greater quantity of solidified metal deposits on the eroded surface. Lower electrical conductivity of the dielectric results in a higher metal removal rare as the gap between wire electrode and workpiece reduced. Especially, the surface characteristics of rough-cut workpiece and wire electrode were analyzed too. To obtain a good surface equality without crack, 4 finish-cuts were necessary reducing fille electrical energy and the offset value.

  • PDF

Machinability of Invar-type Cast Alloys (인바형 저열팽창 주조재의 절삭성)

  • Moon, Byung-Moon;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.135-144
    • /
    • 1997
  • The relative machinability of the invar-type cast alloys, such as invar cast steel, invar-type cast iron, Meehanite cast iron, and the modified Invar-type cast iron containing Mo and V was evaluated based on the tool life test, the surface roughness test and the chipping test. Tool life and surface roughness were measured under various cutting conditions. The tool lives of Invar cast steel, Meehanite cast iron, the modified Invar cast iron and Invar cast iron was 12 min, 8 min, 1 min, 41 min, respectively. The surface finish of Invar cast steel and the modified Invar cast iron was better than that of Meehanite cast non, and the chip breakability of invar cast iron and Meehanite cast iron was better than that of invar cast steel. The Taylor's equations of invar cast steel and the modified invar cast iron were $VT^{0.3076}=154.479$ and $VT^{0.3880}=102.326$, respectively. As the cutting speed increases, the surface finish of the modified invar cast iron was improved.

  • PDF

A Study on the Thermal Deformation of a Cutting Tool in End Milling (엔드밀 작업에서 공구의 열변형에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.25-29
    • /
    • 1999
  • Machining process introduces thermal deformation of a cutter which affects the surface finish of the workpieces. By measuring the temperature distribution f the cutter thermal stress and deformation of the cutter are simulated. In addition surface roughness of workpiece is simulated by the surface-shaping system. The result shows that thermal deformation deteriorates the surface roughness.

  • PDF

A Study on the Improvement of Sculptured surface Sopography in Milling Operation by Using Tertiary Motion Attachment (밀링작업에서 보조장치를 이용한 자유곡면의 표면거칠기 향상에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.66-72
    • /
    • 1996
  • The applicability of a new method, termed the whirling motion concept, for the improvement of the surface finish in milling three-dimensional sculptured surfaces has been investigated. A method for implementing this concept o conventional NC machines that utilize a suitably configured attachment has been proposed. The tool path equation for the ball-end milling process, based on the surface-shaping system, has been obtained. Both results of the computer simulation and the experiment verified the proposed approach.

  • PDF

Performance Characteristics of CVD Diamond Cutting Tools

  • Oles, E.J.;Cackowski, V.J.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 1996
  • CVD diamond tools are becoming more widely used in industry as an economic alternative to polycrystalline diamond (PCD) for machining non-ferrous and non-metallic materials. Although CVD diamond-sheet tools have been on the market for several years, diamond-coated carbide inserts have become available only recently, with the successful resolution of long-standing adhesion problems. Diamond coating morphology on the rake surface of the tool affects chip formation favorably, whereas a microscopically rough, faceted morphology on the flank surface of the tool produces a rough workpiece finish. Workpiece finish can be improved by using a coated tool with a larger nose radius. The tool life provided by diamond-coated tools(~30 $\mu\textrm{m}$ thick) can meet or exceed that of PCD tools, depending on the characteristics of the workpiece material. When using diamond-coated carbide tools in milling, a sharp-edged PCD tool should be used in the wiper position of the cutter to minimize workpiece roughness and burr formation.

  • PDF

Hybrid Technology using 3D Printing and 5-axis Machining for Development of Prototype of the Eccentric Drive System (편심구동장치 시제품 개발을 위한 3D프린팅-5축가공 복합기술)

  • Hwang, Jong-Dae;Yang, Jun-Seok;Yun, Sung-Hwan;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.38-45
    • /
    • 2016
  • Since a 5-axis machine tool has two rotary axes, it offers numerous advantages, such as flexible accessibility, longer tool life, better surface finish, and more accuracy. Moreover, it can conduct whole machining by rotating the rotary feed axes while setting the fixture at once without re-fixing in contrast to conventional 3-axis machining. However, it is difficult to produce complicated products that have a hollow shape. In contrast, 3D printing can produce an object with a complicated hollow shape easily and rapidly. However, because of layer thickness and shrinkage, its surface finish and dimensional accuracy are not adequate. Therefore, this study proposes hybrid technology by integrating the advantages of these two manufacturing processes. 3D printing was used as the additive manufacturing rapidly in the whole body, and 5-axis machining was used as the subtractive manufacturing accurately in the joining and driving places. The reliability of the proposed technology was verified through a comparison with conventional technology in the aspects of processing time, surface roughness. and dimensional accuracy.

Preferential face coating of knitted PET fabrics via UV curing for water- and oil-repellent finish (자외선 경화에 의한 PET 니트직물의 편면 발수발유 가공)

  • Jeong, Yong-Kyun;Jeong, Yongjin;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.27-35
    • /
    • 2005
  • Conventional pad- dry-cure(thermo-fixation) process usually produces functional performance on both sides of a fabric. UV curing technique was applied to impart water- and oil-repellent finish effective only on the face of a PET knitted fabric. The preferential one-side coating, by virtue of the limited penetration of UV light, was achieved by W curing after padding of a fluorocarbon agent without special coating or printing equipments. The difference in the functional property of face and back sides was examined by measuring water and oil repellency at each side of the treated fabric. The influence of pre/post-irradiation dose and agent concentration on the performance of the finished fabrics were investigated. While increase in both resin concentration and post-irradiation did not have significant effect on the finish, UV pre-irradiation of PET fabrics caused remarkable influence presumably due to appropriate surface modification of PET fabrics required for facile wetting of the resin. The dimensional stability and color change of the UV cured fabrics measured by FAST and reflectance spectrophotometry showed significantly decreased color difference and increased percent extension compared with the samples pre-irradiated without agent application.

A Study of a New Precision Finishing Process for Inside Surface of Silicon Nitride Fine Ceramic Pipe by Application of Magnetic Abrasive Machining (자기 연마법에 의한 질화 규소계 세라믹 파이프 내면의 경면 연마 특성에 관한 연구)

  • Park, Won-Gyu;Shinmura, Takeo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.47-53
    • /
    • 2001
  • Results ar presented of a new process for internal precision finishing of slender fine ceramic pipes using a magnetic field generated by a permanent magnets. For finishing the interior surface of a long pipe, a new type of finishing equipment was developed which can be very easily used in an industrial surrounding. In general, the pipe is so slender that a conventional finishing tool is hardly inserted into the pipe deeply, being impossible to finish. Therefore, a new technology has been considered to finish inside of a slender ceramic pipe by a simple technique. In this experimental, Magnetic Abrasive Machining is applied for the inner surface of silicon nitride fine ceramic pipe using ferromagnetic particles mixed with chromium-oxide powder. It is shown the initial roughness of 2.6㎛ Ry(0.42㎛ Ra) in the inside surface can be precisely finished to the roughness of 0.1㎛ Ry(0.01㎛ Ra). This paper discusses the outline of the processing by the application of magnetic abrasive machining and a few finishing characteristics.