• Title/Summary/Keyword: Surface Atom

Search Result 273, Processing Time 0.026 seconds

Giant Perpendicular Magnetic Anisotropy of a Fe(001) Surface: A Density Functional Study

  • Odkhuu, D.;Rhim, S.H.;Yun, Won Seok;Hong, S.C.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.29-29
    • /
    • 2013
  • We predict agigantic perpendicular magnetocrystalline anisotropy (MCA) in Fe (001) capped by 5d transition metal (TM) overlayers by using first principles calculations. Analysis of atom-by-atom contribution to MCA reveals that gigantic MCA as large as 11 meV/TM originates not from Fe atoms but from the 5d TMs through the strong spin-orbit coupling. More specifically, it is the hybridization between TM and Fe d orbitals that also induces non-negligible magnetic moments in TM. Furthermore, spin-channel decompositions of MCA matrix with and without the presence of Fe substrate identify the electronic origin of the perpendicular MCA that the down-down channel contribution plays the most crucial role for the sign changes of MCA of TM overlayers upon the hybridization with Fe-3d.

  • PDF

Ab Initio Study of Mechanism of Forming Germanic Bis-Heterocyclic Compound between Dimethyl-Germylene Carbene (Me2Ge=C:) and Acetone

  • Lu, Xiuhui;Che, Xin;Lian, Zhenxia;Li, Yongqing
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dimethylgermylene carbene and acetone has been investigated with CCSD(T)//B3LYP/6-$31G^*$ method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel is that the two reactants firstly form a four-membered ring carbene (RC4) through the [2+2] cycloaddition reaction. Due to $sp^2$ hybridization of carbene C atom in RC4, RC4 further combines with acetone to form a reactant complexe (RC5). Due to the further $sp^3$ hybridization of carbene C atom in RC4, RC5 isomerizes to a germanic bisheterocyclic compound (P6) via the transition state (TS5).

The Electronic Structures and Magnetism of Monolayer Fe on CuGaSe2(001)

  • Jin, Ying-Jiu;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.59-63
    • /
    • 2007
  • Ferromagnet/Semiconductor heterostructures have attracted much attention because of their potential applications in spintronic devices. We investigated the electronic structures and magnetism of monolayer Fe on $CuGaSe_2(001)$ by using the all-electron full-potential linearized augmented plane-wave method within a generalized gradient approximation. We considered the monolayer Fe deposited on both the CuGa atoms terminated (CuGa-Term) and the Se atom terminated (Se-Term) surfaces of $CuGaSe_2(001)$. The calculated magnetic moment of the Fe atom on the CuGa-Term was about $2.90\;{{\mu}_B}$. Those of the Fe atoms on the Se-Term were in the range of $2.85-2.98\;{{\mu}_B}$. The different magnetic behaviors of the Fe atoms on two different surfaces were discussed using the calculated layer-projected density of states.

Directionality of ο-Phthalaldehyde adsorbed onto H-passivated Si(100) Surface Characterized by NEXAFS and HRPES

  • Kim, Ki-Jeong;Yang, Sena;Kang, Tai-Hee;Kim, Bong-Soo;Lee, Hang-Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1973-1975
    • /
    • 2010
  • The electronic and adsorption structure of o-phthalaldehyde (OPA) on the H-Si(100) surface was investigated by using Near Edge X-ray Fine Structure (NEXAFS) and high resolution photoemission spectroscopy (HRPES). We confirmed that the OPA grown on the H-Si(100) surface showed good dependency with about 60 degree tilting angle using NEXAFS and a single O 1s peak by using HRPES. Hydrogen atom passivated on the Si(100) surface was found to be a seed for making one dimensional organic line that uses a chain reaction as the H-Si(100) surface was compared with the hydrogen free Si(100) surface.

Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface

  • Lee, Chul-Jae;Kim, Hee-Jin;Karim, Mohammad Rezaul;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.545-548
    • /
    • 2006
  • We investigated the Surface-enhanced Raman Spectroscopy (SERS) spectrum of ethephone (2-chloroethylphosphonic acid). We observed significant signals in the ordinary Raman spectrum for solid-state ethephone as well as when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids that were prepared by the $\gamma$-irradiation method. The influence of pH and the influence of anion $(Cl^-,\;Br^-,\;I^-)$ on the adsorption orientation were investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions. The chlorine atom or the chlorine and two oxygen atoms were adsorbed on the colloidal silver surface. Among halide ions, $Br^-$ and $I^-$ were more strongly adsorbed on the colloidal silver surfaces. As a result, the adsorption of ethephone was less effective due to their steric hinderance.

Surface-enhanced Raman Spectroscopy of Benzimidazolic Fungicides: Benzimidazole and Thiabendazole

  • Kim, Mak-Soon;Kim, Min-Kyung;Lee, Chul-Jae;Jung, Young-Mee;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2930-2934
    • /
    • 2009
  • Surface-enhanced Raman Scattering (SERS) spectroscopy is applied to the study of the adsorption of benzoimidazolic fungicides benzimidazole (BIZ) and thiabendazole (TBZ) on silver mirrors. The influence of pH on the adsorption mechanism was investigated. In case of BIZ, two different adsorption mechanisms are deduced depending on the experimental conditions: via the $\pi$ electrons of the ring in neutral conditions and through an ionic pairing of protonated nitrogen atom with the chloride adsorbed on the metal surface. The SERS spectra of TBZ revealed that most molecules were adsorbed on silver surface by the ${\pi}$ electrons in neutral and acidic conditions but in acid conditions, some molecules were adsorbed via the sulfur and nitrogen atoms tilted slightly to the surface.

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

A Theoretical Study of CO Molecules on Metal Surfaces: Coverage Dependent Properties

  • Sang -H. Park;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.574-582
    • /
    • 1991
  • The CO molecules adsorbed on Ni(111) surface is studied in the cluster approximation employing EH method with self-consistent charge iteration. The effect of CO coverage is simulated by allowing the variation of valence state ionization potentials of each Ni atom in model cluster according to the self-consistent charge iteration method. The CO coverage dependent C-O stretching frequency shift, adsorption site conversion, and metal work function change are attributed to the charge transfer between metal surface and adsorbate. For CO/Ni(111) system, net charge transfer from Ni surface to chemisorbed CO molecules makes surface Ni atoms be more positive with increasing coverage, and lowers Ni surface valence band. This leads to a weaker interaction between metal surface valence band and Co $2{\pi}^{\ast}$ MO, less charge transfer to a single CO molecule, and the bule shift of C-O stretching frequency. Further increase of coverage induces the conversion of 3-fold site CO to lower coordination site CO as well as the blue shift of C-O stretching frequency. This whole process is accompanied by the continuous increase of metal work function.

A Kinetic Study on the Growth of Nanocrystalline Diamond Particles to Thin Film on Silicon Substrate

  • Jung, Doo-Young;Kang, Chan-Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.131-136
    • /
    • 2011
  • A kinetic study has been made for the growth of nanocrystalline diamond (NCD) particles to a continuous thin film on silicon substrate in a microwave plasma chemical vapor deposition reactor. Parameters of deposition have been microwave power of 1.2 kW, the chamber pressure of 110 Torr, and the Ar/$CH_4$ ratio of 200/2 sccm. The deposition has been carried out at temperatures in the range of $400\sim700^{\circ}C$ for the times of 0.5~16 h. It has been revealed that a continuous diamond film evolves from the growth and coalescence of diamond crystallites (or particles), which have been heterogeneously nucleated at the previously scratched sites. The diamond particles grow following an $h^2$ = k't relationship, where h is the height of particles, k' is the particle growth rate constant, and t is the deposition time. The k' values at the different deposition temperatures satisfy an Arrhenius equation with the apparent activation energy of 4.37 kcal/mol or 0.19 eV/ atom. The rate limiting step should be the diffusion of carbon species over the Si substrate surface. The growth of diamond film thickness (H) shows an H = kt relationship with deposition time, t. The film growth rate constant, k, values at the different deposition temperatures show another Arrhenius-type expression with the apparent activation energy of 3.89 kcal/mol or 0.17 eV/atom. In this case, the rate limiting step might be the incorporation reaction of carbon species from the plasma on the film surface.

Removal of Trihalomethanes from Tap Water using Activated Carbon Fiber (활성탄소섬유를 사용한 수돗물 내 트리할로메탄의 제거)

  • Yoo, Hwa In;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Activated carbon fiber (ACF) was used to remove four kinds of trihalomethanes(THMs) from tap water which were remained as by-products during the chlorination of water. Adsorption capacity was investigated as a function of THMs concentration and solution temperature, and adsorption mechanism was studied in relating to the surface characteristics of ACF. All the four kinds of THMs were rapidly adsorbed on the surface of ACF by physical adsorption due to the enormous surface micropores and chemical adsorption due to the hydrogen bonds, showing a Langmuir type adsorption isotherm. Langmuir type is especially profitable for the adsorption of low level adsorptives. ACF was very effective for the removal of THMs from tap water because the THMs concentration is below $30{\mu}g/L$ in tap water. The adsorption amount of THMs on ACF increased in order of the number of brom atom; chloroform, bromodichloromethane, dibromochloromethane, and bromoform. The adsorption capacity increased as increasing the number of brom atom due to the decrease of polarity in solution. The adsorption capacity of THMs on ACF can be enhanced by proper surface treatment of ACF.