• Title/Summary/Keyword: Surface Atom

Search Result 273, Processing Time 0.026 seconds

The Effect of H₂O Chemisorption on the Reconstruction of the Si(100) Surface : a Theoretical Approach

  • 양성은;김호징
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1028-1032
    • /
    • 1995
  • The structure and electronic properties of the Si(100) surface is studied using the atom superposition and electron delocalization method. The energy released when the symmetric dimer surface is reconstructed to form the buckled dimer surface with p(2X2) symmetry is calculated to be 0.99 eV per dimer in the case of ideal clean surfaces. This indicates that the surface dimer buckling is intrinsic from the viewpoint of thermodynamics. The relaxation energy, when water is adsorbed on the clean symmetric dimer surface to form the buckled dimer surface, is 2.25 eV per dimer for appropriate coverages. These results show that H2O molecule could induce a reconstruction of the surface structure through adsorption. The buckling of the surface dimer is, therefore, more favorable under the existence of water vapour. This conclusion supports the recently obtained experimental observations by Chander et al.

The Effect of Grain Size on the Stress Shift toward Tensile Side by Deposition Interruptions in Copper Thin Films (구리 박막 제조중 증착 중단시 박막 결정립 크기 변화가 인장응력 방향으로의 응력 이동에 미치는 영향)

  • Lee, Seri;Oh, Seungkeun;Kim, Youngman
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.303-310
    • /
    • 2014
  • In this study, the average in-situ stress in metallic thin film was measured during deposition of the Cu thin films on the Si(111) wafer and then the phenomenon of stress shift by the interruption of deposition was measured using Cu thin films. We have observed the stress shift in accordance with changing amount of atom's movement between the surface and grain boundary through altering the grain size of the Cu thin film with variety of parameters. The grain size is known to be affected on the deposition rate, film thickness and deposition temperature. As a experimental results, the these parameters was not adequate to explain stress shift because these parameters affect directly on the amount of atom's movement between the surface and grain boundary as well as the grain size. Thus, we have observed the stress shift toward tensile side in accordance with the grain size changing through the interlayer deposition. From an experiment with inserting interlayer before deposit Cu, in thin film which has big grain size with high roughness, amount of stress movement is higher along direction of tensile stress after deposition that means, after deposition process, driving force of atoms moving in grain boundary and on the surface of the film is relatively higher than before.

Monohydrated Sulfuric and Phosphoric Acids with Different Hydrogen Atom Orientations: DFT and Ab initio Study

  • Kolaski, Maciej;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1998-2004
    • /
    • 2012
  • We carried out DFT calculations for monohydrated sulfuric and phosphoric acids. We are interested in clusters which differ in orientation of hydrogen atoms only. Such molecular complexes are close in energy, since they lie in the vicinity of the global minimum energy structure on the flat potential energy surface. For monohydrated sulfuric acid we identified four different isomers. The monohydrated phosphoric acid forms five different conformers. These systems are difficult to study from the theoretical point of view, since binding energy differences in several cases are very small. For each structure, we calculated harmonic vibrational frequencies to be sure that if the optimized structures are at the local or global minima on the potential energy surface. The analysis of calculated -OH vibrational frequencies is useful in interpretation of infrared photodissociation spectroscopy experiments. We employed four different DFT functionals in our calculations. For each structure, we calculated binding energies, thermodynamic properties, and harmonic vibrational frequencies. Our analysis clearly shows that DFT approach is suitable for studying monohydrated inorganic acids with different hydrogen atom orientations. We carried out MP2 calculations with aug-cc-pVDZ basis set for both monohydrated acids. MP2 results serve as a benchmark for DFT calculations.

Molecular Orbital Calculations for the Formation of GaN Layers on Ultra-thin AlN/6H-SiC Surface Using Alternating Pulsative Supply of Gaseous Trimethyl Gallium (TMG) and NH$_3$

  • Seong, Si Yeol;Hwang, Jin Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.154-158
    • /
    • 2001
  • The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH3 gases have been examined by ASED-MO calculations. We postulate that the gallium cul ster was formed with the evaporation of CH4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl galluim (MMG). During the injection of NH3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster. This suggests that the adhesion of the initial layer can be reinforced by the incorporation of nitrogen atom through the formation of large grain boundary GaN crystals at the early stage of GaN film growth.

A Study on the Micro-lapping process of Sapphire Wafers for optoelectronic devices (광반도체용 사파이어웨이퍼 기계연마특성 연구)

  • 황성원;신귀수;김근주;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.218-223
    • /
    • 2004
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by Micro-lapping process. The sapphire crystalline wafers were characterized by double crystal X-ray diffraction. The sample quality of crystalline sapphire wafer at surface has a full width at half maximum of 250 arcsec. This value at the surface sapphire wafer surfaces indicated 0.12${mu}m$ sizes. Surfaces of sapphire wafers were mechanically affected by residual stress and surface default. As a result, the value of surface roughness of sapphire wafers measured by AFM(Atom Force Microscope) was 2.1nm.

Directionality of O-Phthaladehyde adsorbed on H-Si(100) Surface Using NEXAFS and HRPES

  • Kim, Gi-Jeong;Park, Seon-Min;Im, Hui-Seon;Kim, Bong-Su;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.79-79
    • /
    • 2010
  • The electronic and adsorption structure of O-Phthaladehyde (OPA) on the H-Si(100) surface was investigated by using Near Edge X-ray Fine Structure (NEXAFS) and high resolution photoemission spectroscopy (HRPES). We confirmed that the OPA grown on the H-Si(100) surface showed good dependency with about 60 degree tilting angle using NEXAFS and a single O 1s peak by using HRPES. Hydrogen atom passivated on the Si(100) surface was found to be a seed for making one dimensional organic line that uses a chain reaction as the H-Si(100) surface was compared with the hydrogen free Si(100) surface. Through the spectral analysis, we will demonstrate 1-D directional formation of OPA on H-Si(100) surface using NEXAFS and HRPES.

  • PDF

The local polishing of material surface using the $CO_2$ laser ($CO_2$ 레이저를 이용한 시료 표면의 국부 폴리싱)

  • Kim, Young-Seop;Shon, Ik-Bu;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.7-10
    • /
    • 2009
  • In this paper, we study experimentally the local polishing of $SiO_2$ surface using the $CO_2$ laser. For laser local polishing, we polished to remove the grooves or to be reformed the surface of grooves after forming the grooves on the material surface. We measured the reflectance, transmittance, and beam profile in order to measure the roughness of polished surface. The Atom Force Microscope (AFM) is used to measure roughness of local polishing surface. We can predict that the laser polishing contribute to the removal of generated debris and surface roughness on the micro processing.

  • PDF

Reaction Probabilities for Three-atom Rearrangement Reaction. A + B - C = A - B + C : An Idealized Classical Approach (三原子 置煥反應의 反應確率. 간단한 古典力學的 取扱)

  • Kim Yoo Hang;Hyung Kyu Shin
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.294-303
    • /
    • 1975
  • An idealized linear collision model has been employed to calculate the reaction probabilities for the three-atom rearrangement reaction $A+B-C{\to}A-B+C$. Potential energy surface used is also a highly idealized one with constant values. Numerical results were obtained for the system in which the atomic masses of all three atoms are the same. Potentials were varied to see the effect of the magnitude of the opposing potential barrier on the reaction probabilities. Results obtained were compared with those obtained using different models.

  • PDF

INVESTIGATION OF ENERGETIC DEPOSITION OF Au/Au (001) THIN FILMS BY COMPUTER SIMULATION

  • Zhang, Q. Y.;Pan, Z. Y.;Zhao, G. O.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.183-189
    • /
    • 1998
  • A new computer simulation method for film growth, the kinetic Monte Carlo simulation in combination with the results obtained from molecular dynamics simulation for the transient process induced by deposited atoms, was developed. The behavior of energetic atom in Au/Au(100) thin film deposition was investigated by the method. The atomistic mechanism of energetic atom deposition that led to the smoothness enhancement and the relationship between the role of transient process and film growth mechanism were discussed. We found that energetic atoms cannot affect the film growth mode in layer-by-layer at high temperature. However, at temperature of film growth in 3-dimensional mode and in quasi-two-dimensional mode, energetic atoms can enhance the smoothness of film surface. The enhancement of smoothness is caused by the transient mobility of energetic atoms and the suppression for the formation of 3-dimensional islands.

  • PDF