• Title/Summary/Keyword: Surface Atom

Search Result 273, Processing Time 0.026 seconds

Adsorption Selectivities between Hydroxypyridine and Pyridone Adsorbed on the Ge(100) Surface: Conjugation and Geometric Configuration Effects on Adsorption Structures

  • Kim, Minkyung;Lee, Myungjin;Lee, Hangil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.581-586
    • /
    • 2014
  • The most stable adsorption structures and their corresponding energies of 4-pyridone, 4-hydroxypyridine, 2-pyridone and 2-hydroxypyridine have been investigated by Density Functional Theory (DFT) calculation and high-resolution photoemission spectroscopy (HRPES). We confirmed that between the two reaction centers of 4- and 2-pyridone, only O atom of carbonyl functional group can act as a Lewis base while both the two reaction centers of 4- and 2-hydroxypyridine (tautomers of 4- and 2-pyridone) can successfully function as a Lewis base. On the other hand, owing to their molecular structures, there is a remarkable difference between the adsorption structures of 4- and 2-hydroxypyridine. Through the analysis of the N 1s and O 1s core level spectra obtained using HRPES, we also could corroborate that two different adducts coexist on the surface at room temperature due to their activation energy investigating the coverage dependent variation of bonding configurations when these molecules are adsorbed on the Ge(100) surface.

Gas Cluster ion Source for Etching and Smoothing of Solid Surfaces (고체 표면 식각 및 평탄화를 위한 가스 클러스터 이온원 개발)

  • 송재훈;최덕균;최원국
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.232-235
    • /
    • 2002
  • An 150 kV gas cluster ion accelerator was fabricated and assessed. The change of surface morphology and surface roughness were examined by an atom force microscope (AFM) after irradiation of $CO_2$ gas clusters on Si (100) surfaces at the acceleration voltages of 50 kV. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5$\times$10$^{11}$ ions/$\textrm{cm}^2$. At the boundary of the ion dosage of 10$^{12}$ ions/$\textrm{cm}^2$, the density of the induced hillocks was decreased and RMS (root mean square) surface roughness was not deteriorated further. At the dosage of 5x10$^{13}$ ions/$\textrm{cm}^2$, the induced hillocks completely disappeared and the surface became very flat. In addition, the irradiated region was sputtered. $CO_2$ cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surface and thus to attain highly smooth surfaces. $CO_2$ monomer ions are also bombarded on the ITO surface at the same acceleration voltage to compare sputtering phenomena. From the AFM results, the irradiation of monomer ions make the hillocks sharper and the surfaces rougher On the other hand, the irradiation of $CO_2$ cluster ions reduces the hight of hillocks and planarize the ITO surfaces. From the experiment of isolated cluster ion impact on the Si surfaces, the induced hillocks m high had the surfaces embossed at the lower ion dosages. The surface roughness was slightly increased with the hillock density and the ion dosage. At higher than a critical ion dosage, the induced hillocks were sputtered and the sputtered particles migrated in order to fill valleys among the hillocks. After prolonged irradiation of cluster ions, the irradiated region was very flat and etched.

  • PDF

An Algorithm for Finding Surface Atoms of a Protein Molecule Based on Voxel Map Representation (복셀 맵을 이용한 단백질 표면 원자의 발견 알고리즘)

  • Kim, Byung-Joo;Kim, Ku-Jin;Seong, Joon-Kyung
    • The KIPS Transactions:PartA
    • /
    • v.19A no.2
    • /
    • pp.73-76
    • /
    • 2012
  • In this paper, we propose an efficient method to extract surface atoms from a protein molecule. Surface atoms are defined as a set of atoms who can contact given probe solvent $P$, where $P$ does not collide with the molecule. The atoms contained in the molecule are represented as a set of spheres with van der Waals radii. The probe solvent also is represented as a sphere. We propose a method to extract the surface atoms by computing the offset surface of the molecule with respect to the radius of $P$. For efficient computation of the offset surface of a molecule, a voxel map is constructed for the offset surfaces of the spheres. Based on GPU (graphic processor unit) acceleration, a data parallel algorithm is used to extract the surface atoms in 42.87 milliseconds for the molecule containing up to 6,412 atoms.

Substrate tempperature dependence of crystalline Y2O3 films grown by Ionized Cluster Beam Deposition

  • Cho, M.H.;Whangbo, S.W.;Seo, J.G.;Choi, S.C.;Cho, S.J.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.87-89
    • /
    • 1998
  • The Y2O3 films on Si(111) was grown by ionized cluster beam depposition (ICBD) in ultrahigh-vacuum (UHV). The acceleration voltage and oxygen ppartial ppressure were fixed at 5 kV and 2$\times$10-5 Torr resppectively. The substrate tempperature was varied from 10$0^{\circ}C$ to $600^{\circ}C$ in order to find the deppendence of crystallinity of Y2O3 films on the substrate tempperature. The crystallinity of the films with the substrate tempperature studied using x-ray diffraction (XRD) and Rutherford backscattering sppectroscoppy (RES). Surface crystallinity and surface morpphology of the films were also investigated using the reflection high-energy electron diffraction (RHEED) and atomic force microscoppe (AFM) resppectively. The films grown at the substrate tempperature below 50$0^{\circ}C$showed the ppoly-crystalline structure of oxygen deficiency. On the contrary the single-crystalline structure was obtained at the substrate tempperature over 50$0^{\circ}C$ and the stochimetry was gradually matched as increasing the substrate tempperature. The surface morpphology showed the increase of the surface roughness as the substrate tempperature was increased upp to 50$0^{\circ}C$ The crystallinity of the film was not good and the minimum channeling yield $\chi$min was measured at 0.91 The stochiometric and high crystallinine film (surface $\chi$min=0.25) was obtained as the substrate tempperature increased upp to 60 $0^{\circ}C$ which indicate the tempperature was sufficient to migrate the depposited atom.

  • PDF

A Magneto-optical Trap Below a Dielectric Coated Mirror Surface

  • Yu, Hoon;Lee, Lim;Lee, Kyung-Hyun;Kim, Jung-Bog
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.223-226
    • /
    • 2009
  • A Magneto-Optical Trap (MOT) for $^{87}Rb$ atoms near the surface of a dielectric coated mirror at the top of a small $20{\times}25{\times}40\;mm^3$ cell has been observed. Two beams of $3.3\;mW/cm^2$ were used for optical cooling and an anti-Helmholtz magnetic field with a spatial gradient of 9.1 G/cm was used for magnetic trapping. The thickness of the mirror coated on a cover glass was less than $100{\mu}m$. The mirror covered the top of a cell and the atom-chip was located outside the vacuum in order to exploit the long life time of the mirror and easy operation of the chip. The trapping position was found 5 mm beneath the mirror surface. The number of trapped atoms was roughly $3{\times}10^7$ atoms and the temperature was approximately a few tens mK. In this paper, we describe the construction of the mirror-MOT in detail.

Surface Chemical Reactions for Metal Organic Semiconductor Films by Alternative Atomic Layer Deposition and Thermal Evaporation

  • Kim, Seong Jun;Min, Pok Ki;Lim, Jong Sun;Kong, Ki-Jeong;An, Ki-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.166.2-166.2
    • /
    • 2014
  • In this work, we demonstrated a facile and effective method for deposition of metal tetraphenylporphyrin (MTPP) thin film by a combined a thermal evaporation (TE) and atomic layer deposition (ALD). For the deposition of Zn-TPP thin film, Tetraphenylporphyrin (TPP) and diethyl zinc (DEZ) were used as organic and inorganic materials, respectively. Optimum conditions for the deposition of Zn-TPP thin film were established systematically: (1) the exposure time of DEZ as inorganic precursor and (2) the substrate temperature were adjusted, respectively. As a result, we verified that the surface reaction between organic semiconductor (TPP) and metal atom (Zn) was ALD process. In addition, we calculated activation energy by using Arrhenius equation for the substrate temperature versus area change rate of pyrrolic nitrogen. The surface and interface reactions between TPP with Zn were investigated by X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis spectroscopy, and scanning electron microscopy. These results show a facile and well-controllable fabrication technique for the metal-organic thin film for future electronic applications.

  • PDF

Effect of Iron Co-deposited Nickel on the Microstructures and Properties of Electroplated Nanocrystalline Nickel-iron Alloys (전착된 나노 결정질 니켈-철 합금의 미세구조 및 물성에 대한 철의 영향)

  • Byun Myung-Hwan;Cho Jin-Woo;Song Yo-Seung
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.4
    • /
    • pp.156-162
    • /
    • 2005
  • Nickel-iron nanocrystalline alloys with different compositions and grain sizes were fabricated by electro-plating for MEMS devices. The iron content of the deposits was changed by varying the nickel/iron ion ratio in the electrolyte. X-ray diffraction (XRD) analysis was applied for measuring the strength of the texture and grain size of the deposits. The nickel/iron atom ratio of the deposits was analyzed by EDS. The hardness of the alloys was evaluated by Vickers hardness indenter. The internal stress of the deposits was measured by Thin Film Stress Measurement using Stoney's formula. Surface morphology and roughness were investigated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The results of this study revealed that at a grain size of approximately $17\~24$nm the hardness, internal stress and roughness depend strongly on the iron content. With increasing the iron content, the hardness and internal stress of the deposits increased. An excellent correlation between the increase in the internal stress and the loss of (200) texture was found.

$NO_x$ Chemistry Over Rutile $TiO_2$(110) Surfaces

  • Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.131-131
    • /
    • 2012
  • We present our recent temperature-programmed desorption (TPD) study on catalytic reductions of $NO_x$ such as NO, $NO_2$, and $N_2O$ over rutile $TiO_2$(110) surfaces. Our results indicate that $NO_2$/NO readily reacts to give NO/$N_2O$ desorption at the substrate temperature as low as 100 K/70 K. Interestingly, $N_2O$, however, does not dissociate into $N_2$ and $O_{BBO}$ over the oxygen vacancy on the $TiO_2$(110) surface. Successive reduction of NO and $NO_2$ into $N_2O$ and NO, respectively, leaves oxygen atoms on the $TiO_2$(110) surface in a form of $O_{ad}$, which can induce additional reductive channels of NO and $NO_2$ at higher temperatures up to 400 K. During the repeated TPD cycles of $NO_x$, our x-ray photoelectron spectroscopy (XPS) analysis indicates that no N atom accumulates on the $TiO_2$ surface.

  • PDF

Enhanced binding between metals and CNT surface mediated by oxygen

  • Park, Mi-Na;Kim, Byeong-Hyeon;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.61-61
    • /
    • 2010
  • In the present work, we present the optimized the hybrid structures of carbon nanotubes (CNTs) and metal nanocomposites including Cu, Al, Co and Ni using the first principle calculations based on the density functional theory. Introduction of CNTs into a metal matrix has been considered to improve the mechanical properties of the metal matrix. However, the binding energy between metals and pristine CNTs wall is known to be so small that the interfacial slip between CNTs and the matrix occurs at a relatively low external stress. The application of defective or functionalized CNTs has thus attracted great attention to enhance the interfacial strength of CNT/metal nanocomposites. Herein, we design the various hybrid structures of the single wall CNT/metal complexes and characterize the interaction between single wall CNTs and various metals such as Cu, Al, Co or Ni. First, differences in the binding energies or electronic structures of the CNT/metal complexes with the topological defects, such as the Stone-Wales and vacancy, are compared. Second, the characteristics of functionalized CNTs with various surface functional groups, such as -O, -COOH, -OH interacting with metals are investigated.We found that the binding energy can be enhanced by the surface functional group including oxygen since the oxygen atom can mediate and reinforce the interaction between carbon and metal. The binding energy is also greatly increased when it is absorbed on the defects of CNTs. These results strongly support the recent experimental work which suggested the oxygen on the interface playing an important role in the excellent mechanical properties of the CNT-Cu composite[1].

  • PDF

Optical Properties and Structure of Black Cobalt Solar Selective Coatings (흑색 코발트 태양 선택흡수막의 광학적특성과 구조)

  • Lee, Kil-Don
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.48-56
    • /
    • 2011
  • Black cobalt solar selective coatings were prepared by thermal oxidation of electroplated cobalt metal on copper and nickel substrates. The optical properties and structure of the black cobalt selective coating for solar energy utilizations were characterized by glow discharge spectrometry (GDS), ultraviolet-visible-near infrared (UV-VIS-NIR) spectrometer, atom force microscopy(AFM) and X-ray photoelectron spectroscopy(XPS). The optical properties of optimum black cobalt selective coating prepared on copper substrate were a solar absorptance of 0.82 and a thermal emittance of 0.01. From the GDS depth profile analysis of these coatings, the concentration of cobalt particles near the interface was higher than at the surface, but oxygen concentration at the surface was higher than at the interface. These results suggest that the selective absorption was dominated by this chemical composition variation in the coating. The surface of this film exhibited morphology with root-mean-square(rms) roughness of about 144.3nm. XPS measurements data showed that several phases of Co coexist($Co_3O_4$,CoO) in the film.