NO_x Chemistry Over Rutile TiO₂(110) Surfaces

김유권

아주대학교 화학과

We present our recent temperature-programmed desorption (TPD) study on catalytic reductions of NO_x such as NO, NO_2 , and N_2O over rutile $TiO_2(110)$ surfaces. Our results indicate that NO_2/NO readily reacts to give NO/N_2O desorption at the substrate temperature as low as 100 K/70 K. Interestingly, N_2O , however, does not dissociate into N_2 and O_{BBO} over the oxygen vacancy on the $TiO_2(110)$ surface. Successive reduction of NO and NO_2 into N_2O and NO, respectively, leaves oxygen atoms on the $TiO_2(110)$ surface in a form of O_{ad} , which can induce additional reductive channels of NO and NO_2 at higher temperatures up to 400 K. During the repeated TPD cycles of NO_x , our x-ray photoelectron spectroscopy (XPS) analysis indicates that no N atom accumulates on the TiO_2 surface.

Keywords: NO_x, NO, N₂O, NO₂, rutile TiO₂(110), catalytic reduction