• 제목/요약/키워드: Surface Alloying

Search Result 232, Processing Time 0.023 seconds

Synthesis and Characterization of PtPd and PtRuPd Anode Catalysts for Direct Methanol Fuel Cells

  • Horvath G.;Park K. W.;Sung Y. E.
    • 한국전기화학회:학술대회논문집
    • /
    • 2002.07a
    • /
    • pp.211-218
    • /
    • 2002
  • In this study, Pt/Pd (1.1), PtPd (2:1) and PtPd (3:1) binary catalysts and Pt/Ru/Pd (5:4:1) ternary catalyst were designed. The catalysts were synthesized by impregnation method using $NaBH_4$ as a reducing agent. A good catalyst for methanol oxidation requires low on-set potential, stable durability and low activation energy. In order to investigate the catalytic activity for the methanol oxidation, electrochemical measurements such as cyclic voltammetry and chronoamperometry were peformed in sulfuric acid with/without methanol solution. In order to calculate the activation energy of the reaction, electrochemical measurements were also tested at different temperatures. For investigation of the structural analysis such as particle size and alloying, X-ray diffraction and transmission electron microscopy analysis were used. In order to identify the role of the Pd and to determine the composition of the surface of the Pt/Pd nanoparticles, X-ray photoelectron spectroscopy (XPS) analysis was investigated. The XPS spectra of Pd showed that Pd appears only as a metallic state in the binary catalysts. The chemical states of Pt in PtPd catalysts are both metallic and oxidative. Polarization curves and power density data were obtained by testing the DMFC unit cell performance of PtPd and PtRuPd catalysts. These data showed that Pt/Pd (2:1) and Pt/Ru/Pd (5:4:1) have better performance than Pt and Pt/Ru, respectively.

  • PDF

Mass Production of Mg based Hydrogen Absorbing Alloys and Evalution of Hydrogenation and Degradation Properties by Hydriding/Dehydriding Cyclic Test (교반관법에 의한 Mg 기지 수소저항합금의 대량제조와 반복적 수소화 반응에 따른 수소화 특성 및 열화특성 평가)

  • Ha, Won;Lee, Sung-Gon;Hong, Tae-Whan;Kim, Young-Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • Hydrogenation properties of Mg-Ni and Mg-Ti-Ni alloys were investigated by Pressure-Composition Isotherm (PCI) test. Those alloys were fabricated by a new alloying method, Rotation-Cylinder Method (RCM). The as-cast microstructure of Mg-10 mass% Ni alloy consists of an island-like hydride forming $\alpha$-Mg phase and the eutectic structure. After 350 cyclic tests, Mg-lO mass % Ni alloy was pulverized into fine particles of 100 nm. The fine particles, which have a large specific surface area, are highly reactive with hydrogen. However, extreme pulvehzation can separate Mg from $Mg_2Ni$ in the eutectic structure, so $Mg_2Ni$ of the eutectic structure cannot behave as a dissociated hydrogen supplier.

Fabrication and Mechanical Property of $Al_2$O$_.3$/Al Composite by Pressureless Infiltration (무가압 침윤법에 의한 $Al_2$O$_.3$/Al 복합재료 제조와 기계적 특성)

  • 이동윤;박상환;이동복
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.303-309
    • /
    • 1998
  • The fabrication of Al2O3/Al composite by pressureless infiltration was investigated by the change of Mg and Si content in Al alloy infiltration process and infiltration atmosphere. The effect of alloying elements infiltration atmosphere and interfacial reactants between Al alloy matrix and Al2O3 particles were in-vestigated in terms of bendingstrength and harness test,. The fabrication of Al2O3/Al composite by the vestigated in terms of bending strength and hardness test. The fabrication of Al2O3/Al composite by the pressureless infiltration was done in nitrogen atmosphere with Mg in Al alloy. It was successfully fabricated at $700^{\circ}C$ according to Mg contents in Al alloy and infiltration condition. Because Mg in the Al alloy and ni-trogen atmosphere of infiltratio condition produced Mg-N compound(Mg3N2) it decreased the wetting an-gle between molten Al alloy and Al2O3 particles by coating on surface of Al2O3 particles. The fracture strength of Al2O3/Al-Mg composite was 800MPa and Al2O3/Al-Si-Mg composite was 400MPa. Si in Al alloy decreased the interfacial strength between Al alloy matrix and Al2O3 particles.

  • PDF

Effect of Annealed Oxides on the Formation of Inhibition Layer During Hot-Dip Galvanizing of 590Mpa Trip Steel

  • Kim, Seong-Hwan;Huh, Joo-Youl;Lee, Suk-Kyu;Park, Rho-Bum;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.6-12
    • /
    • 2011
  • The selective surface oxidation of a transformation-induced-plasticity (TRIP) steel containing 1.6 wt.% Mn and 1.5 wt.% Si during annealing at $800^{\circ}C$ was investigated for its influence on the formation of an inhibition layer during hot-dip galvanizing. The selective oxidation of the alloying elements and the oxide morphology were significantly influenced by the annealing atmosphere. The pure $N_{2}$ atmosphere with a dew point $-40^{\circ}C$ promoted the selective oxidation of Mn as a crystalline $Mn_{2}SiO_{4}$ phase, whereas the $N_{2}$ + 10% $H_{2}$ atmosphere with the same dew point $-40^{\circ}C$ promoted the selective oxidation of Si as an amorphous Si-rich oxide phase. During hot-dip galvanizing, the $Mn_{2}SiO_{4}$ phase was reduced more readily by Al in the Zn bath than the Si-rich oxide phase. Consequently, the pure $N_{2}$ atmosphere resulted in a higher formation rate of $Fe_{2}Al_{5}$ particles at the Zn/steel interface and better galvanizability than the $N_{2}$ + 10% $H_{2}$ atmosphere.

Ultra shallow $p^{+}$n junction formation using the boron diffusin form epi-co silicide (에피 코발트 실리사이드막으로 부터의 붕소 확산을 이용한 극저층 $p^{+}$n 접합 형성)

  • 변성자;권상직;김기범;백홍구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.134-142
    • /
    • 1996
  • The epi-CoSi$_{2}$ layer was formed by alloying a Co(120$\AA$)/Ti(50$\AA$) bilayer. In addition, the ultra shallow p$^{+}$n junction of which depth is about not more than 40nm at the background concentration, 10$^{18}$atoms/cm$^{3}$ could be formed by annealing (RTA-II) the ion implanted epi-silicide. When the temperature of RTA-I is as low as possible and that of RTA-II is moderate, the p$^{+}$n junction that has low leakage current and stable epi-silicide layer could be obtained. That is, when th econdition of TRA-I was 900$^{\circ}C$/20sec and that of RTA-II was 900$^{\circ}C$/10sec, the reverse leakage current was as high as 11.3$\mu$A/cm$^{2}$ at -5V. The surface of CoSi$_{2}$ appeared considerably rough. However, when the conditon of RTA-I was 800$^{\circ}C$/20sec or 700$^{\circ}C$/20sec, the leakage currents were as low as 8.3nA/cm$^{2}$ and 9.3nA/cm$^{2}$, respectively and also the surfaces appeared very uniform.

  • PDF

Corrosion Behavior of Casting Aluminum Alloys in H2SO4 Solution (H2SO4 수용액에서의 주조용 알루미늄 합금들의 부식거동)

  • Woo, Sang-Hyun;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.17-21
    • /
    • 2016
  • The corrosion behavior of aluminum alloys in the $H_2SO_4$ solution was investigated based on potentiodynamic techniques. Electrochemical properties, such as corrosion potential($E_c$), passive potential($E_p$), corrosion current density($I_c$), corrosion rate(mpy), of Al-Mg-Si, Al-Cu-Si and Al-Si alloys were characterized at room temperature. Passive aluminum oxide film, which including $Al_2(SO_4)_3$ and $3Al_2O_34SO_38H_2O$, were uniformly formed on the surface via the reaction of Al with $SO{_3}^{2-}$ or $SO{_4}^{2-}$ ions in the $H_2SO_4$ solution and the dependence of the corrosion behavior on the alloying element was discussed. The selective leaching of alloy element increased with increasing Cu content in the aluminum alloys.

Improvement of Oxidation Resistance of Gray Cast Iron with Thermal Sprayed Silicon Coating by Laser Surface Alloying

  • Park, Heung-Il;Nakata, Kazuhiro
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.389-397
    • /
    • 1998
  • 회주철 모재의 표면에 감압 플라즈마 용사법으로 실리콘 분말을 피복시킨 후 $CO_2$ 레이저를 이용하는 표면 합금화로 고온 내스케일성이 향상된 표면 개질층을 제조하였다. 실리콘의 표면 합금층에는 응집상의 흑연(chunky graphite)이 $Fe_5Si_3$로 구성된 망상의 화합물 기지속에 정출하는 조직특성을 보였다. 대기 분위기에서 18.0ks동안 열중량측정(TG)한 결과 실리콘 표면 합금층의 무게 증가율은 회주철 모재에 비하여 923K에서는 약 1/3, 1098K에서는 약 1/10을 나타내었다. 그리고 1098K에서 18.0ks동안 유지시킨 주철모재 시편에서 원래의 모재표면을 기준으로 다공성의 외부스케일과 편상흑연을 따라 생성된 내부스케일로 구성된 두께 $60{\sim}70\;{\mu}m$의 두꺼운 산화스케일이 생성되었으나, 실리콘의 표면 합금층에서는 두께 $3{\sim}5\;{\mu}m$의 치밀한 외부 산화스케일만이 생성되었다. 실리콘 합금층의 단면 미소경도값은 MHV $300{\sim}1100$으로 그 변동폭이 심하였으나, 진공분위기에서 열처리(1223K, 18.0ks)한 경우 미소경도값의 편차는 MHV $300{\sim}500$으로 개선되었다.

  • PDF

A Study on the Microstructure of Melt-Quenched AISI 310 Stainless Steel (단롤법으로 제조한 AISI 310 스테인레스강의 급냉 조직에 관한 연구)

  • Choi, J.H.;Oh, M.S.;J., S.S.;Lee, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.19-26
    • /
    • 1996
  • Melt-quenching of steels leads to various metallographic effects such as refinement of grain size, extension of the solid solubility of carbon and alloying elements, and is expected to improve the mechanical properties of conventional steels. Furthermore, this technique is a useful method for producing sheet directly from liquid state. And it will lend itself to development as a continuous cast process which offers significant savings in energy and product costs. The purpose of this study is to present the microstructures of melt-quenched austenitic stainless steels. As the results of this study, the morphology of melt-quenched microstructure show that the roll contact area is columnar structure, and the free surface area is dendrite structure. As the line speed increases, the ratio of $d_{colunnar}/d_{total}$ increases from 0.12 to 0.60, but the ribbon thickness decreases from $150{\mu}m$ to $30{\mu}m$.

  • PDF

Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.574-579
    • /
    • 2013
  • The milling and particulate characteristics of Al alloy-$Al_2O_3$ powder mixtures for a reaction-bonded $Al_2O_3$ (RBAO) process were studied. A commercially available prealloyed Al powder with Zn, Mg, Cu and Cr alloying elements (7475 series) was mixed with a calcined sinter-active $Al_2O_3$ powder and then milled in centrifugal milling equipment for ~48 hrs. The Al alloy-$Al_2O_3$ powder mixtures after milling were characterized and evaluated in various ways to reveal their particulate characteristics during milling. The milling efficiency of the Al alloy increased with a longer milling time. Comminution of the Al alloy particles started with its elongation, showing a high aspect ratio. With a longer milling time, the elongated Al alloy particle changed in terms of its shape and size, becoming equiaxially fine particles. Regardless of the milling efficiency of the Al alloy particles, all of the Al alloy particles repeatedly experienced strong plastic deformation during milling, giving rise to higher density of surface defects, such as microcracks, and leading to higher residual microstress within the Al alloy particles. The chemical reactions, oxidation behavior and hydration behavior of the Al alloy particles and the hydrolysis characteristics of their reaction with the environment were also observed during the milling process and during the subsequent powder handling steps.

Effect of Heat Treatment on Microstructures and Magnetic Properties of Rapidly Solidified Fe-6.5wt % Si sheet (급속응고된 Fe-6.5wt% Si 강판의 미세조직과 자기적 특성에 미치는 열처리의 영향)

  • Hwang, D.H.;Lee, K.H.;Lee, T.H.;Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.2
    • /
    • pp.149-154
    • /
    • 1995
  • The alloying of 6.5wt % Silicon in iron decreases the magnetization and the anisotropy and minimizes the iron loss noticeably. But it is very difficult to make thin sheets because of its poor ductility which is due to an ordering reaction (body centered cubic to CsCI type crystal structure). However the ordering reaction can be suppressed by rapid solidification method. The cooling rate of rapidly solidified Fe-6.5wt % Si alloy is about $10^3K/s$ and rapidly solidified structure are fine structure, cellular structure, dendrite and equiaxed grain from surface. The precipitates of $DO_3$ Phase emerges on $B_2$ matrix and the coercive force was 0.51 Oe (50cycle, 15KGauss) in Fe-6.5wt% Si alloy which was processed by heat treatment of $1150^{\circ}C$ for 1hr in high vacuum.

  • PDF