• Title/Summary/Keyword: Surface Adaptive

Search Result 395, Processing Time 0.028 seconds

Numerical Study of slot injection into turbulent supersonic flow on adaptive meshes (적응 격자계를 이용한 초음속 난류유동장의 측면제트분사에 대한 수치적연구)

  • Kim J. R.;Kim I. T.;Kim J. S.
    • Journal of computational fluids engineering
    • /
    • v.6 no.2
    • /
    • pp.40-46
    • /
    • 2001
  • Two-dimensional steady flowfields generated by slot injection into supersonic flow are numerically simulated by the integration of Navier-stokes equation with two-equation κ-turbulence model. High-order upwind scheme is used on unstructured adaptive meshes. The numerical results are compared with experimental data in terms of surface static pressure distributions, the length of the upstream separation region, and the height of the Mach surface for steady flowfields with a Mach number of 3.71 and a unit Reynolds number of 5.83×10/sup 6//m.

  • PDF

The Toolpath Generation for Free-Formed Surface with the Flat Endmill (플랫 앤드밀을 이용한 자유곡면 가공경로 생성)

  • Lee, Gun-Young;Nam, Won-Woo;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.104-111
    • /
    • 2001
  • The toolpath generation for 3D shaped parts with adaptive isocurve is more precise than existing methods, and the machining time can be reduced. Whether adaptive isocurves are inserted or not is determined by the surface shape, but the number of curves inserted and the total path length vary with initial step lengths. In this paper, therefore, by introducing the concept of the scale factor into the initial path interval ; toolpath was regenerated.

  • PDF

Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach (신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근)

  • Yoon, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1848-1849
    • /
    • 2006
  • The new robust controller design method is proposed for the flight control systems with model uncertainties. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the "explosion of complexity" problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

  • PDF

Decentralized Adaptive Control for Nonlinear Systems with Time-Delayed Interconnections: Intelligent Approach (시간 지연 상호 연계를 가진 비선형 시스템의 분산 적응 제어: 지능적인 접근법)

  • Yoo, Sung-Jin;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.413-419
    • /
    • 2009
  • A decentralized adaptive control method is proposed for large-scale systems with unknown time-delayed nonlinear interconnections unmatched in control inputs. It is assumed that the time-delayed interaction terms are bounded by unknown nonlinear bounding functions. The nonlinear bounding functions and uncertain nonlinear functions of large-scale systems are compensated by the function approximation technique using neural networks. The dynamic surface control method is extended to design the proposed memoryless local controller for each subsystem of uncertain nonlinear large-scale time delay systems. Therefore, although the interconnected systems consist of a large number of subsystems, the proposed controller can be designed simply. We prove that all the signals in the total closed-loop system are semiglobally uniformly bounded and the control errors converge to an adjustable neighborhood of the origin. Finally, an example is given to demonstrate the effectiveness and applicability of the proposed scheme.

A Fuzzy Adaptive Sliding Mode Controller for Tracking Control of Robotic Manipulators (로봇 매니퓰레이터의 추적 제어를 위한 퍼지 적응 슬라이딩 모드 제어기)

  • Le, Tien Dung;Kang, Hee-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.555-561
    • /
    • 2012
  • This paper describes the design of a fuzzy adaptive sliding mode controller for tracking control of robotic manipulators. The proposed controller incorporates a modified traditional sliding mode controller to drive the system state to a sliding surface and then keep the system state on this surface, and a fuzzy logic controller to accelerate the reaching phase. The stability of the control system is ensured by using Lyapunov theory. To verify the effectiveness of the proposed controller, computer simulation is conducted for a five-bar planar robotic manipulator. The simulation results show that the proposed controller can improve the reaching time and eliminate chattering of the control system at the same time.

Adaptive Identification Method of EDM Parameters Using Neural Network (신경망을 이용한 방전 조건의 적응적 결정 방법)

  • 이건범;주상윤;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.43-49
    • /
    • 1998
  • Adaptive neural network approach is presented for determining Electrical Discharge Machining (EDM) parameters. Electrical Discharge Machining has been widely used with its capability of machining hard metals and tough shapes. In the past few years, EDM has been established in tool-room and large-scale production. However. in spite of it's wide application, an universal selection method of EDM parameters has not been established yet. No attempt has been tried before to suggest a logical method in determining essential machine parameters considering the machining rate and resulting surface roughness integrity. The paper presents a method, which is focusing on determining appropriate machining parameters. Depending on the electrode wear and surface roughness, an adaptive neural network is designed for providing suitable machining guideline.

  • PDF

A Study on Optics Polishing Technology by Adaptive Tool and Eccentric Motion Mechanism (적응형 공구 및 편심 운동 방식의 광학 연마 기술에 관한 연구)

  • Lee, Ho-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.133-139
    • /
    • 2007
  • In this paper, optics polishing technology using adaptive tool and eccentric motion mechanism was suggested. Optics polishing can make high reflective and accurate surface. The optics polishing process based on the eccentric motion mechanism has been used to manufacture the ophthalmic lens mold. Also ophthalmic lens mold factory hold conventionally a lot of the curved polishing tools for the versatile mold curves of eye diopters and want to reduce tool numbers. Therefore, a polishing machine with adaptive airbag tool was developed and experimentally verified in view of surface roughness and form accuracy.

Adaptive Neural Dynamic Surface Control via $H_{\infty}$ Approach for Nonlinear Flight System (비선형 비행 시스템을 위한 $H_{\infty}$ 접근법 기반 적응 신경망 동적 표면 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1728-1729
    • /
    • 2007
  • This paper presents an adaptive neural dynamic surface control (DSC) approach with $H_{\infty}$ tracking performance for a full dynamics of a nonlinear flight system. It is assumed in this paper that model uncertainties such as structured and unstrutured uncertainties and external disturbances influence the nonlinear aircraft model. In our control system, self recurrent wavelet neural networks (SRWNNs) are used to compensate model uncertainties of the nonlinear flight system, and an adaptive DSC technique is extended for disturbance attenuation of the nonlinear flight system. From Lyapunov stability theorem, it is shown that $H_{\infty}$ performance from external disturbances can be obtained. Finally, we perform the simulation for the nonlinear six-degree-of-freedom F-16 aircraft model to confirm the effectiveness of the proposed control system.

  • PDF

Adaptive control of the back bead width in gas metal arc welding process (아크용접에서 이면비드 크기의 적응제어)

  • 부광석;조형석;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.289-294
    • /
    • 1988
  • This paper describes tbe design and implementation of the adaptive controller to maintain the glood weld quality in gas metal arc welding process. The weld torch travel speed and the surface temperature are taken, respectively, as an input and an output of the welding control system. Because of the very complex phenomena of the process, the input-output dynamic model was experimentally identified by AIC (Akiake Information Criterion). Based on the model structure, the explicit model reference adaptive controller is simulated in order to regulate the output tempernture to the desired level.

  • PDF

Analysis of Using Geometry-based Adaptive Octree Method (Geometry-based Adaptive Octree 방법에 대한 고찰)

  • Park Jong-Ryoul;Sah Jong-Youb
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.86-91
    • /
    • 2000
  • Automatic method for generation of mesh and three dimension natural convection flow result adapted by this method are presented in this paper. It lake long time to meshing com plex 3-D geometries, and It's difficult to clustering grid at surface boundary. Octree structure resolve this difficulty.

  • PDF