• 제목/요약/키워드: Surface Acoustic Wave Velocity

Search Result 79, Processing Time 0.026 seconds

Characteristics of ZnO thin film for surface acoustic filters (표면탄성파 필터를 위한 ZnO 박막의 특성)

  • Kim, Young-Jin;Park, Wuk-Dong;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 1995
  • The excellent c-axis oriented zinc oxide thin films were prepared by the RF magnetron sputtering method on glass substrates. Optimum fabrication conditions of the ZnO films were such that RF power, substrate temperature, and gas pressure of mixture Ar(50%):$O_{2}$(50%) were 150 W, $200^{\circ}C$, and 5 mTorr, respectively. In these conditions, the deposition rate was $310\;{\AA}/min$, and the resistivity of the film was $1{\times}10^6\;{\Omega}{\cdot}cm$. The ZnO film also showed high c-axis orientation and crystalinity according to XRD pattern and SEM photograph. A fabricated interdigital transducer generated 1st mode surface acoustic wave at 46.6 MHz and 2nd mode surface acoustic wave at 52.5 MHz. At the 1st mode, the phase velocity of surface acoustic wave and the electromechanical coupling coefficient were 2795 m/sec and 0.031 %, respectivly. At the 2nd mode, they were 3149 m/sec and 0.019 %. respectivly.

  • PDF

Surface Acoustic Waves Sensors for Wireless Measurement of Temperature (Surface Acoustic Wave를 이용한 무선 온도 센서 설계 및 구현)

  • Kim, Jaek-Won;Park, Joo-Yong;Kim, Kyung-Hwan;Yeo, Joon-Ho;Burm, Jin-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.469-470
    • /
    • 2006
  • Surface Acoustic Wave(SAW) devices can be used to as wireless sensor elements, called SAW transponders, for measuring shysical quantities such as temperature that do not need any power supply and may be accessed wirelessly. SAW devices were fabricated on Y-Z $LiNbO_3$ piezoelectric substrate with a good temperature coefficient property. The signal response of SAW sensor on the temperature change were compared. To measure the change of SAW velocity. Temperature changed form $20^{\circ}C$ to $400^{\circ}C$ was linearly changed, the SAW sensor is application to the temperature sensor.

  • PDF

Enhancing the Reconstruction of Acoustic Source Field Using Wavelet Transformation

  • Ko Byeongsik;Lee Seung-Yop
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1611-1620
    • /
    • 2005
  • This paper shows the use of wavelet transformation combined with inverse acoustics to reconstruct the surface velocity of a noise source. This approach uses the boundary element analysis based on the measured sound pressure at a set of field points, the Helmholtz integral equations and wavelet transformation for reconstructing the normal surface velocity field. The reconstructed field can be diverged due to the small measurement errors in the case of nearfield acoustic holography (NAH) using an inverse boundary element method. In order to avoid this instability in the inverse problem, the reconstruction process should include some form of regularization for enhancing the resolution of source images. The usual method of regularization has been the truncation of wave vectors associated with small singular values, although the order of an optimal truncation is difficult to determine. In this paper, a wavelet transformation is applied to reduce the computation time for inverse acoustics and to enhance the reconstructed vibration field. The computational speed-up is achieved, with solution time being reduced to $14.5\%$.

Evaluation of the Thermal Degradation in Co-based Superalloy using High frequency Transducer of Scanning Acoustic Microscope (초음파현미경의 고주파 초음파 탐촉자를 이용한 코발트기 초내열합금강의 열화평가)

  • Park, Ik-Keun;Cho, Dong-Su;Kim, Yong-Kwon;Lim, Jae-Seang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.518-524
    • /
    • 2004
  • The feasibility of Y(z) curve method of scanning acoustic microscope using high frequency transducer was experimentally studied for assessment of the thermal degradation in Co-based superalloy. Thermal degradation was performed to simulate the microstructural changes in Co-based superalloy arising from long term exposure at high temperature. Longitudinal wave velocity measured by pulse echo method using 10MHz transducer and leaky surface acoustic wave (LSAW) velocity measured by V(z) curve method using 200MHE transducer were measured to investigate the effect on thermal degradation. Ultrasonic velocity decreased as the aging time increased in both ultrasonic waves. Moreover, the low frequency longitudinal wave velocity decreased a little. Otherwise, the high frequency LSAW velocity drastically decreased up to a maximum of 4.7% at the aging time of 4,000hours. A good correlation was found between LSAW and Vickers hardness. Consequently, V(z) curve method of SAM using high frequency transducer could be a potential tool for assessing thermal degradation.

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

Characteristic Analysis and Design of a Precise Manipulation of Microparticle using Surface Acoustic Wave Device (미세입자의 정밀제어를 위한 표면탄성파 장치의 특성연구 및 설계)

  • Kim, Dongjoon;Eom, Jinwoo;Ko, Byung-Han;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.660-666
    • /
    • 2015
  • Surface acoustic wave(SAW) device is used for transporting and patterning micro-scale particles such as cells. In this research, velocity of particles was investigated moved by SAW device with two types of interdigital electrode transducers(IDTs) under various conditions. SAW devices which have single IDTs and double IDTs were designed and fabricated. On the previous studies, resultant velocities of particles were predicted considering output power and power ratio between IDTs-shape. For more accurate prediction, power loss in SAW device and a power difference between two types of IDTs-shape were considered. Maximum error between the test results and predicted values was 5 % so the power loss must be considered in the velocity prediction of the particles.

A Study on Surface Acoustic-Wave Amplfication in Piezo-electric Crystals (Piezo 압전 결정체에서의 표면탄성파 증폭에 관한 연구)

  • 이윤현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.6 no.1
    • /
    • pp.51-57
    • /
    • 1981
  • Carriers moving in a semiconductor can impart gain or loss to an acousic wave traveling through Piezo-electric materials. In this paper, surface a coustic wave amplifiers, which employ the interaction between carriers drifting in a semiconduct or film and electic fields accompanying a Rayleigh wave propagating on a Piezoelectric substrate, are described. The effect of various electromagnetic boundary condition on th propagation of surface waves in Piezoelectrics is considered. An expression for the dependence of surface wave velocity on electic boundary conditions is derived. Calculations show that, for properly prepared material, significant amplification is expected up to the microwave frequencies. At high frequencies, gain is reduced because electro diffusion smooths out the electron bucning necessary for amplification.

  • PDF

Seismic Surface Wave Cloaking by Acoustic Wave Refraction (음향파 굴절을 이용한 지진파의 표면파 가림)

  • Lee, Dong-Woo;Kang, Young-Hoon;Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.257-263
    • /
    • 2015
  • Recently two seismic cloaking methods of earthquake engineering have been suggested. One is the seismic wave deflection method that makes the seismic wave bend away and the other is the shadow zone method that makes an area that seismic waves cannot pass through. It is called as seismic cloaking. The fundamental principles of the seismic cloaking by variable refractive index were explained. A two-dimensional cylindrical model which was composed of 40 layers of different density and modulus was tested by numerical simulation. The center region of the model to be protected is called 'cloaked area' and the outer region of it to deflect the incoming wave is called 'cloaking area' or 'cloak area.' As the incoming surface wave is approaching to the cloaking area, the refractive index is decreasing and, therefore, the velocity and impedance are increasing. Then, the wave bends away the cloaked area instead of passing it. Three cases are tested depending on the comparison between the seismic wavelength and the diameter of the cloaked region. The advantage and disadvantage of the method were compared with conventional earthquake engineering method. Some practical requirements for realization in fields were discussed.

Fabrication of a SAW Filter Using a ZnO Thin Film deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 증착된 ZnO 박막 SAW 필터의 제작)

  • Jung, Eun-Ja;Jang, Cheol-Yeong;Jung, Young-Chul;Choi, Hyun-Chul;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.141-144
    • /
    • 2003
  • This study proposes ZnO thin film as a piezoelectric material for SAW (surface acoustic wave) filter. The ZnO thin film with thickness $2.6{\mu}m$ was deposited (0001)-oriented sapphire by RF magnetron sputtering technique. IDTs (inter-digital transducers) electrodes were patterned upon SAW filter mask with solid finger structure unapodized using lift-off method on ZnO piezoelectric thin film. SAW propagation velocity was measured with the center frequency by HP 8753C network analyzer. A fabricated ZnO SAW filter exhibited a high propagation velocity of 5433 $^m/s$ and relatively insertion loss of -53.391dB at $\lambda=80{\mu}m$. The side-lobe attenuation of the center frequency was about 17dB. When the wavelength was $80{\mu}m$ $(\lambda/4=20{\mu}m)$, the center frequency was 67.907 MHz. $k^2$ (electromechanical coupling coefficient) was 15.84 %.

  • PDF

Non-Destructive Detection of Hydride Blister in PHWR Pressure Tube Using an Ultrasonic Velocity Ratio Method

  • Cheong Yong-Moo;Lee Dong-Hoon;Kim Sang-Jae;Kim Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.369-377
    • /
    • 2003
  • Since Zr-2.5Nb pressure tubes have a high risk for the formation of blisters during their operation in pressurized heavy water reactors, there has been a strong incentive to develop a method for the non-destructive detection of blisters grown on the tube surfaces. However, because there is little mismatch in acoustic impedance between the hydride blisters and zirconium matrix, it is not easy to distinguish the boundary between the blister and zirconium matrix with conventional ultrasonic methods. This study has focused on the development of a special ultrasonic method, so called ultrasonic velocity ratio method for a reliable detection of blisters formed on Zr-2.5Nb pressure tubes. Hydride blisters were grown on the outer surface of the Zr-2.5Nb pressure tube using a cold finger attached to a steady state thermal diffusion equipment. To maximize a difference in the ultrasonic velocity in hydride blisters and the zirconium matrix, the ultrasonic velocity ratio of longitudinal wave to shear wave, $V_L/V_S$, has been determined based on the flight time of the longitudinal echo and reflected shear echo from the outer surface of the tubes. The feasibility of the ultrasonic velocity ratio method is confirmed by comparing the contour plots reproduced by this method with those of the blisters grown on the Zr-2.5Nb pressure tubes.