• 제목/요약/키워드: Suppression for harmonic current

검색결과 21건 처리시간 0.027초

Control Strategy and Characteristic Analysis of Hybrid Active Power Filters with the Resonant Impedance Principle

  • Fang, Lu;Xu, Xian-Yong;Luo, An;Li, Yan;Tu, Chun-Ming;Fang, Hou-Hui
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.935-946
    • /
    • 2012
  • A new kind of resonant impedance type hybrid active filter (RITHAF) is proposed for dynamic harmonic current suppression and high capacity reactive compensation in medium and high voltage systems. This paper analyzed the different performance of the RITHAF when the active part of the RITHAF is controlled as a current source and as a voltage source, respectively. The harmonic suppression function is defined in this paper. The influences of the changes caused by the grid impedance and the detuning of the passive power filter on the compensating characteristics of the RITHAF are studied by analyzing the suppression function. Simulation and industrial application results show that the RITHAF has excellent performances in harmonic suppression and reactive compensation, which is suitable for medium and high voltage systems.

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

Study of Harmonic Suppression of Ship Electric Propulsion Systems

  • Wang, Yifei;Yuan, Youxin;Chen, Jing
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1303-1314
    • /
    • 2019
  • This paper studies the harmonic characteristics of ship electric propulsion systems and their treatment methods. It also adopts effective measures to suppress and prevent ship power systems from affecting ship operation due to the serious damage caused by harmonics. Firstly, the harmonic characteristics of a ship electric propulsion system are reviewed and discussed. Secondly, aiming at problems such as resonant frequency and filter characteristics variations, resonance point migration, and unstable filtering performances in conventional passive filters, a method for fully tuning of a passive dynamic tunable filter (PDTF) is proposed to realize harmonic suppression. Thirdly, to address the problems of the uncontrollable inductance L of traditional air gap iron core reactors and the harmonics of power electronic impedance converters (PEICs), this paper proposes an electromagnetic coupling reactor with impedance transformation and harmonic suppression characteristics (ECRITHS), with the internal filter (IF) designed to suppress the harmonics generated by PEICs. The ECRITHS is characterized by both harmonic suppression and impedance change. Fourthly, the ECRITHS is investigated. This investigation includes the harmonic suppression characteristics and impedance transformation characteristics of the ECRITHS at the fundamental frequency, which shows the good performance of the ECRITHS. Simulation and experimental evaluations of the PDTF are carried out. Multiple PDTFs can be configured to realize multi-order simultaneous dynamic filtering, and can effectively eliminate the current harmonics of ship electric propulsion systems. This is done to reduce the total harmonic distortion (THD) of the supply currents to well below the 5% limit imposed by the IEEE-519 standard. The PDTF also can eliminate harmonic currents in different geographic places by using a low voltage distribution system. Finally, a detailed discussion is presented, with challenges and future implications discussed. The research results are intended to effectively eliminate the harmonics of ship electric power propulsion systems and to improve the power quality of ship power systems. This is of theoretical and practical significance for improving the power quality and power savings of ship power systems.

전력품질 개선을 위한 단상 전압제어형 능동전력필터 시스템에 관한 연구 (A Study on the Single Phase Voltage-Controlled Active Power Filter for Power Quality Improvement)

  • 손진근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권5호
    • /
    • pp.238-245
    • /
    • 2003
  • In this paper, a single Phase voltage source voltage-controlled active power filter(APF) for power quality improvement was proposed. The proposed APF has the performance of harmonic suppression and unity power factor correction. The performance of harmonic suppression can be obtained by controlling the waveshape of the APF output voltage to be sine wave. And, unity power factor is controlled by the reactive power control loop of the APF output. Simulation and experimental results using diode rectifier showed that the voltage-controlled APF, unlike the current-controlled APF, can reduce the voltage harmonics as well as current harmonics. Also the results showed that the input dover factor and power quality were greatly improved.

A Hybrid Static Compensator for Dynamic Reactive Power Compensation and Harmonic Suppression

  • Yang, Jia-qiang;Yang, Lei;Su, Zi-peng
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.798-810
    • /
    • 2017
  • This paper presents a combined system of a small-capacity inverter and multigroup delta-connected thyristor switched capacitors (TSCs). The system is referred to as a hybrid static compensator (HSC) and has the functions of dynamic reactive power compensation and harmonic suppression. In the proposed topology, the load reactive power is mainly compensated by the TSCs. Meanwhile the inverter is meant to cooperate with TSCs to achieve continuous reactive power compensation, and to filter the harmonics generated by nonlinear loads and the TSCs. First, the structure and mathematical model of the HSC are discussed Then the control method of the HSC is presented. An improved reduced order generalized integrator (ROGI)-based selective current control method is adopted in the inverter to achieve high-performance reactive and harmonic current compensation. Meanwhile, a switch control strategy is proposed to implement precise and fast switching of the TSCs and to avoid changing the time delay needed by the conventional switch strategy. Experiments are implemented on a 20 KVA HSC prototype and the obtained results verify the validity of the proposed HSC system.

An Interleaved Converter for 12-pulse Rectifier Harmonic Suppression

  • Li, Yuan;Yang, Wei;Cang, Sheng;Yang, Shiyan
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1349-1362
    • /
    • 2017
  • In order to further improve the harmonic suppression capability of conventional 12-pulse rectifiers, this paper proposes a low harmonic 12-pulse rectifier using an Active Inter-Phase Reactor (AIPR). Through a detailed analysis of the relationship between the input current, output current and circulating current of the DC side, the mechanism where the AC grid side current harmonics can be suppressed by the DC side circulating current is revealed. On this basis, an interleaved APFC controlled by a DSP is designed and used as an AIPR along with an interphase reactor. A simulation is carried out with MATLAB/Simulink and an experiment is performed on a 9-kVA prototype. The obtained results verify the feasibility and validity of the proposed approach. Compared with a traditional 12-pulse rectifier, the THD can be reduced to 1/5 of the original value, and the capacity of the AIPR is only 2% of the load power. Thus, it is suitable for high-power applications.

전자레인지용 LLC 공진형 인버터의 입력전류 고조파 억제 (Harmonic Suppression of the Input Current in Microwave Oven Using LLC Resonant Inverter)

  • 강계룡;김흥근;차헌녕
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.225-230
    • /
    • 2018
  • This paper proposes a parametric design of an LLC resonant inverter used for a microwave oven. To improve the harmonic performance of the microwave oven, a current controller with a variable PI gain is proposed. Due to the recent strengthening of harmonics regulations, inverter control technology for microwave ovens is now required to satisfy harmonic performance. In an LLC resonant inverter, the voltage gain varies remarkably depending on the magnetron voltage, output power, and input voltage. To satisfy harmonic performance, a controller that can maintain operation in the zero-voltage switching (ZVS) region and control changes in voltage gain is required. The modified design of the LLC resonant inverter ensures ZVS operation even when the magnetron is heated. Application of the variable current controller improves harmonic control according to the instantaneous gain curve change. The validity of the proposed power control with a variable current controller is verified by experiments with a 1200 W microwave oven.

Research on a Multi-Objective Control Strategy for Current-source PWM Rectifiers under Unbalanced and Harmonic Grid Voltage Conditions

  • Geng, Yi-Wen;Liu, Hai-Wei;Deng, Ren-Xiong;Tian, Fang-Fang;Bai, Hao-Feng;Wang, Kai
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.171-184
    • /
    • 2018
  • Unbalanced and distorted grid voltages cause the grid side current of a current source PWM rectifier to be heavily distorted. They can also cause the DC-link current to fluctuate with a huge amplitude. In order to enhance the performance of a current-source PWM rectifier under unbalanced and harmonic grid voltage conditions, a mathematical model of a current-source PWM rectifier is established and a flexible multi-objective control strategy is proposed to control the DC-link current and grid-current. The fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic components of the grid voltage are first separated with the proposed control strategy. The grid current reference are optimized based on three objectives: 1) sinusoidal and symmetrical grid current, 2) sinusoidal grid current and elimination of the DC-current $2^{nd}$ order fluctuations, and 3) elimination of the DC-current $2^{nd}$ and $6^{th}$ order fluctuations. To avoid separation of the grid current components, a multi-frequency proportional-resonant controller is applied to control the fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic current. Finally, experimental results verify the effectiveness of proposed control strategy.

전자식 안정기의 고조파 저감에 관한 연구 (A study on reducing the harmonic wave in the electronic ballast)

  • 박찬근;이성근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 춘계종합학술대회
    • /
    • pp.484-488
    • /
    • 2000
  • 본 논문에서는 형광등용 인버터에서 발생하는 고조파를 억제할 수 있는 2단 평활랑 콘덴서를 이용한 고효율 고조파 저감회로를 제안한다. 형광등용 인버터에 직류전원으로서 사용되는 전파 전류의 파형은 전압 평활 콘덴서가 충전될 때 입력전압의 최대치 부근에서 펄스형태를 가지는 돌입전류의 발생으로 인해 많은 고조파들을 함유하게 된다. 따라서 이 고조파의 원인이 되는 돌입전류를 억제하기 위하여 본 논문에서는 전단 평활용 콘덴서의 충전전압을 이용하여 입력에서의 갑작스러운 충전전류를 억제하는 방법을 제안하였다. 그 결과 공급전류에서의 고조파의 발생을 억제하여 역율을 개선하게된다. 이에 대한 타당성을 시뮬레이션을 통하여 확인하였다.

  • PDF

Real Time Implementation of Active Power Filters for Harmonic Suppression and Reactive Power Compensation using dSPACE DS1104

  • Kumar, Seethapathy;Umamaheswari, B.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.373-378
    • /
    • 2008
  • In this paper, an Active Power Filter (APF) is implemented using a dSPACE DS1104 processor to compensate harmonics and reactive power produced by nonlinear load. The reference source current is computed based on the measurement of harmonics in the supply voltage and load current. A hysteresis based current controller has been implemented in a DSP processor for injecting the compensating current into the power system, so that APF allows suppression of the harmonics and reactive power component of load current, resulting in a supply current that is purely sinusoidal. Simulation and experimental results of the proposed APF to meet the IEEE-519 standards are presented.