• 제목/요약/키워드: Supporting Structure

검색결과 1,079건 처리시간 0.026초

DSM 기반의 프로세스 구조화 방법론 (A new approach to structuring the process based on design structure matrix (DSM))

  • 설현주;김철현;이창용;박용태
    • 품질경영학회지
    • /
    • 제37권3호
    • /
    • pp.39-53
    • /
    • 2009
  • This paper suggests a new process structuring method, which we call process modularization, for decomposing and grouping activities in a process. Above all, we propose the concept of a module that is a group of activities positioned on the same flow before and after control constructs. Since activities in a module are relatively strongly interrelated with one another, it is important to take into consideration of these together. A design structure matrix (DSM) is used to structure the process because it has a lot of advantages in process modeling and analysis. We developed two algorithms: the restricted topological sorting (RTS) algorithm for ordering activities and the module finding (MF) algorithm for detecting modules in a process, which utilize the DSM. The suggested approach enables a firm's manager to design and analyze the process effectively. We also developed a supporting tool to accelerate the progress of process modularization. The supporting tool aids the process manager in finding the module and understanding the process structure easily. An illustrative example is addressed to show operations of the suggested approach.

태양전지 웨이퍼용 Wire Saw안정화를 위한 지지구조 개선 (Design of the Supporting Structure of a Wire Saw for the Solar Cell Wafer)

  • 이일환;노승훈;김동욱;박인규;길사근;김영조
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.59-64
    • /
    • 2018
  • In recent years, the solar cell market has steadily grown with the demand for new energies. And wire sawing is one of the most critical processes in manufacturing solar cell wafer which is supposed to affect the breakage of wafers most during the process and afterwards. Generally, the defects of the wafers are generated from the structural vibrations of the machine. In the sawing process, the vibrations cause unnecessary normal stress on the cut surface of wafers, and eventually create the surface damage or leave the residual stress. In this study, the dynamic properties of a wire saw have been analyzed through the frequency response test and the computer simulation. And the effects of the design alterations have been investigated to stabilize the machine structure and further to reduce the vibrations. The result shows that relatively simple design alterations of supporting structure without any change of major parts of the machine can suppress the vibrations of the machine effectively.

플랜트 설비 지지용 대안 강구조 시스템의 내진성능 (Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure)

  • 곽병훈;안숙진;박지훈
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

하부구조가 지붕구조의 지진응답에 미치는 영향에 관한 연구 (A Study on the Influence of a supporting structure on the Seismic Response of a Roof Structure)

  • 정찬우;강주원
    • 한국공간구조학회논문집
    • /
    • 제7권2호
    • /
    • pp.63-74
    • /
    • 2007
  • 대공간구조물은 쉘, 스페이스프레임, 막등의 지붕구조와 이를 지지하는 RC조등의 지지구조로 이루어져 있다. 이에, 단순화를 위해서 지붕구조를 상부구조라 부르고, 지지구조를 하부구조라고 한다. 본 논문에서는 하부구조가 상부구조의 지진응답에 미치는 영향을 고찰함을 그 목적으로 하고 이를 위한 기초적인 연구를 수행하였다. 상부구조와 하부구조를 각각 고유의 진동특성을 가지고 있는 단자유도계로 보고 그 각각의 독립구조물이 연결되어 하나의 2질점계 구조물을 형성한다고 가정하였다. 상부구조물이 1질점계 단독으로 존재할 때의 지진응답과 2 질점계의 상부구조로서 존재할 경우의 지진응답을 비교함으로써 그 영향을 고찰할 수 있었다. 본 논문에서는, 상부구조와 하부구조의 질량비 및 주기비가 하부구조가 상부구조에 미치는 영향을 고려할 때 중요한 설계변수가 됨을 나타내었다.

  • PDF

On determining seismic anchor force of anchoring frame structure supporting three-stage slope

  • Lin, Yu-liang;Lu, Li;Li, Ying-xin;Xue, Yuan;Feng, Zhi-jun;Wang, Zhi-meng;Yang, Guo-lin
    • Geomechanics and Engineering
    • /
    • 제22권3호
    • /
    • pp.265-275
    • /
    • 2020
  • As a flexible supporting structure, the anchoring frame structure is widely adopted to support multistage slopes in high earthquake-intensity area for its effectiveness and practicality. The previous study indicates that the anchor of anchoring frame structure is the most likely to be damaged during earthquakes. It is crucial to determine the pull-out capacity of anchor against seismic force for the seismic design of anchoring frame structure. In this study, an analytical model of a three-stage slope supported by anchoring frame structure is established, and the upper bound method of limit analysis is applied to deduce the seismic anchor force of anchoring frame structure. The pull-out capacity of anchor against seismic force of anchoring frame structure at each stage is obtained by computer programming. The proposed method is proved to be reasonable and effective compared with the existing published solution. Besides, the influence of main parameters on the pull-out capacity of anchor against seismic force is analyzed to provide some recommendations for the seismic design of anchoring frame structure.

상시 진동을 사용한 교량 상부 구조계의 휨강성 추정기법 (Substructural Identification of Bending Stiffness in Bridge Deck)

  • 구기영;윤정방;이진학
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.556-563
    • /
    • 2005
  • This paper proposed a new substructural identification method to estimate the bending stiffness of a bridge deck, a fundamental structural health index of a super-structure. The proposed method can estimate the bending stiffness without considering actual supporting conditions by using substructural identification method while most of conventional methods need reasonable assumptions on supporting conditions which are hard to be assessed in a real bridge in operation. The mathematical formulation is derived and the results of laboratory tests are summarized. It was verified that the proposed method gives consistent estimation results regardless of actual supporting conditions.

  • PDF

배관 지지 조건에 따른 U-bolt 구조의 응력 해석 (Stress Analysis for U-bolt Atructure by Pipe Supporting Condition)

  • 김상일;강중규
    • 대한조선학회논문집
    • /
    • 제40권2호
    • /
    • pp.63-68
    • /
    • 2003
  • With the trend of large-sized ship in Korea, recently several hundreds of thousands of U-bolts for a year have been used as a pipe fastener In this paper, we have evaluated the strength for present U-bolt structure by pipe supporting conditions(deck, ceiling and wall mounting type) For this purpose, the equivalent and bending stresses have been calculated by linear elastic analysis using the finite element program ABAQUS. At the same time, a variety of load conditions such as design pressure, weight effect and acceleration are also considered.

주파수 응답함수를 이용한 구조물 고유진동수 극대화를 위한 최적 지지점 선정 (Selection of Optimal Supporting Position to Maximize Natural Frequency of the Structure Using Frequency Response Function)

  • 박용화;정완섭;박윤식
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.648-654
    • /
    • 2000
  • A procedure to determine the realizable optimal positions of rigid supports is suggested to get a maximum fundamental natural frequency. a measured frequency response function based substructure-coupling technique is used to model the supported structure. The optimization procedure carries out the eigenvalue sensitivity analysis with respect to the stiffness of supports. As a result of such stiffness optimization, the optimal rigid-support positions are shown to be determined by choosing the position of the largest stiffness. The optimally determined support conditions are verified to satisfy the eigenvalue limit theorem. To demonstrate the effectiveness of the proposed method, the optimal support positions of a plate model are investigated. Experimental results indicate that the proposed method can effectively find out the optimal support conditions of the structure just based on the measured frequency response functions without any use of numerical model of the structure.

  • PDF

Numerical analysis of reaction forces in blast resistant gates

  • Al-Rifaie, Hasan;Sumelka, Wojciech
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.347-359
    • /
    • 2017
  • Blast resistant gates are required to be lightweight and able to mitigate extreme loading effect. This may be achieved through innovative design of a gate and its supporting frame. The first is well covered in literature while the latter is often overlooked. The design of supporting frame depends mainly on the boundary conditions and corresponding reaction forces. The later states the novelty and the aim of this paper, namely, the analysis of reaction forces in supporting structure of rectangular steel gates subjected to "far-field explosions". Flat steel plate was used as simplified gate structure, since the focus was on reaction forces rather than behaviour of gate itself. The analyses include both static and dynamic cases using analytical and numerical methods to emphasize the difference between both approaches, and provide some practical hints for engineers. The comprehensive study of reaction forces presented here, cover four different boundary conditions and three length to width ratios. Moreover, the effect of explosive charge and stand-off distance on reaction forces was also covered. The analyses presented can be used for a future design of a possible "blast absorbing supporting frame" which will increase the absorbing properties of the gate. This in return, may lead to lighter and more operational blast resistant gates.

Optimal design of a wind turbine supporting system accounting for soil-structure interaction

  • Ali I. Karakas;Ayse T. Daloglua
    • Structural Engineering and Mechanics
    • /
    • 제88권3호
    • /
    • pp.273-285
    • /
    • 2023
  • This study examines how the interaction between soil and a wind turbine's supporting system affects the optimal design. The supporting system resting on an elastic soil foundation consists of a steel conical tower and a concrete circular raft foundation, and it is subjected to wind loads. The material cost of the supporting system is aimed to be minimized employing various metaheuristic optimization algorithms including teaching-learning based optimization (TLBO). To include the influence of the soil in the optimization process, modified Vlasov and Gazetas elastic soil models are integrated into the optimization algorithms using the application programing interface (API) feature of the structural analysis program providing two-way data flow. As far as the optimal designs are considered, the best minimum cost design is achieved for the TLBO algorithm, and the modified Vlasov model makes the design economical compared with the simple Gazetas and infinitely rigid soil models. Especially, the optimum design dimensions of the raft foundation extremely reduce when the Vlasov realistic soil reactions are included in the optimum analysis. Additionally, as the designated design wind speed is decreased, the beneficial impact of soil interaction on the optimum material cost diminishes.