• Title/Summary/Keyword: Supported catalyst

Search Result 421, Processing Time 0.031 seconds

Preparation of Pt Catalysts for 2-propanol Dehydrogenation using Sol-gel Method (솔-젤법을 이용한 2-propanol 탈수소화 반응 Pt 촉매의 제조)

  • Lee, Yeong-Kweon;Lee, Hwaung;Song, Hyung Keun;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.328-334
    • /
    • 2007
  • Chemical heat pump system of 2-propanol/acetone/hydrogen is most suitable to the recovery of waste heat of power plant. various types of 5 wt% Pt-alumina catalysts were prepared for 2-propanol dehydrogenation using sol-gel method. The characteristics and the dehydrogenation reaction rate of each catalyst were investigated. Pt-alumina xerogel catalyst has excellent reaction rate and good durability in comparison with the existing alumina supported Pt catalysts. Pt-alumina aerogel catalyst had the highest reaction rate in all prepared catalysts, but sufficient aging time was necessary to maintain its reaction rate. A potential advantage of the aerogel catalyst is the fact that the high temperature heat treatment is not required. Without heat treatment or with low temperature heat treatment, the Pt-alumina aerogel catalyst has excellent reaction rate as well as durability and this gives us the economic advantage. Alumina xerogel supported Pt catalyst prepared by incipient wetness method showed good reaction rate, and had good mechanical strength. Blank alumina xerogel prepared by sol-gel method can be used for the support of metal catalysts.

Decomposition of Low-toxic Propellant by Cu-La-Al/honeycomb Catalysts (Cu-La-Al/honeycomb 촉매를 이용한 저독성 추진제 분해)

  • Kim, Munjeong;Yoo, Dalsan;Lee, Jeongsub;Joen, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.296-303
    • /
    • 2021
  • The objective of this study is to investigate the applicability of a Cu-supported honeycomb catalyst as a catalyst for decomposition of a low toxic liquid propellant based on ammonium dinitramide (ADN). A mixture of copper, lanthanum, and alumina was supported on the honeycomb support by wash coating to prepare a Cu-La-Al/honeycomb catalyst. We elucidated that the effect of metal loading on the physicochemical properties of Cu-La-Al/honeycomb catalyst and catalytic performance in decomposition of the ADN-based liquid propellant. As the number of wash coatings increased, the amount of active metal Cu was increased to 4.1 wt%. The BET surface area of the Cu-La-Al/honeycomb catalyst was in the range of 3.1~4.1 ㎡/g. The micropores were hardly present in Cu-La-Al/honeycomb catalysts, however, the mesopores and macropores were well developed. The Cu (2.7 wt%)-La-Al/honeycomb catalyst exhibited the highest activity in the decomposition of the ADN-based liquid propellant, which is attributed to the largest surface area, the largest pore volume, and the well-developed mesopores and macropores.

Partial Oxidation of Methane over Ni/SiO2

  • Roh, Hyun-Seog;Dong, Wen-Sheng;Jun, Ki-Won;Liu, Zhong-Wen;Park, Sang-Eon;Oh, Young-Sam
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.669-673
    • /
    • 2002
  • Ni catalyst (Ni: 15 wt%) supported on precalcined SiO2 has been investigated in reforming reactions of methane to synthesis gas. The catalyst exhibited fairly good activity and stability in partial oxidation of methane (POM), whereas it deactivated in steam reforming of methane (SRM). Pulse reaction results of CH4, O2, and CH4/O2 revealed that Ni/SiO2 has high capability to dissociate methane. The results also revealed that both CH4 and O2 are activated on the surface of metallic Ni, and then surface carbon species react with adsorbed oxygen to produce CO and CO2 depending on the bond strength of the oxygen species on the catalyst surface.

Cathode Catalyst of Direct Borohydride/Hydrogen Peroxide Fuel Cell for Space Exploration (우주탐사용 직접 수소화붕소나트륨/과산화수소 연료전지의 환원극 촉매)

  • YU, SU SANG;OH, TAEK HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.444-452
    • /
    • 2020
  • This study investigated the cathode catalyst of direct borohydride/hydrogen peroxide fuel cells for space exploration. Various catalysts such as Au, Ag, and Ni were supported on multiwalled carbon nanotubes (MWCNTs). Various techniques, such as transmission electron microscopy, Brunauer-Emmett-Teller method, scanning electron microscopy, and X-ray diffraction were conducted to investigate the characteristics of the catalysts. Fuel cell tests were performed to evaluate the performance of the catalysts. Ag/MWCNTs exhibited better catalytic activity than the Ni/MWCNTs and better catalytic selectivity of the Au/MWCNTs. Ag/MWCNTs presented good catalytic activity and selectivity even at an elevated operating temperature. The performance of Ag/MWCNTs was also stable for up to 60 minutes.

The characteristics of grown carbon nanotubes by controlled catalyst preparation at the catalytic chemical vapor deposition (촉매제어를 통한 촉매화학기상증착법으로 성장시킨 탄소나노튜브의 특성분석)

  • Kim, Jong-Sik;Kim, Gwan-Ha;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1378-1379
    • /
    • 2006
  • Carbon nanotubes (CNTs) with few defects and very small amount of amorphous carbon coating have been synthesized by catalytic decomposition of acetylene in $H_2$ over well-dispersed metal particles supported on MgO. The yield, quality and diameters of CNTs were obtained by control of catalyst metal compositions to be used. The optimization condition of carbon nanotubes with high yield is when Co and Mo are in a 1:1 ratio and Fe metal contents to Co is increased on magnesium oxide support. It is also found that the diameter of the as-prepared CNTs can be controlled mainly by adjusting the molar ratio of Fe-Mo, Co-Fe, and Co-Mo versus the MgO support. Our results indicated that desired diameter distribution of CNTs is obtained by choosing or combining the catalyst to be employed.

  • PDF

REACTIVITY AND DURABILITY OF V2O5 CATALYSTS SUPPORTED ON SULFATED TIO2 FOR SELECTIVE REDUCTION OF NO BY NH3

  • Choo, Soo-Tae;Nam, Chang-Mo
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • The selective catalytic experiments using both sulfated/sulfur-free titania and V2O5/TiO2 catalysts have been conducted for NO reduction by NH3 in a packed-bed, down-flow reactor. The sulfated and vanadia loaded titania exhibited higher activity for NO removal than the sulfur-free catalysts, where > 90% NO removal was achieved over the sulfated V2O5/TiO2 catalyst between 280∼500 C. The surface structure of vanadia species on the catalyst surface played a critical role in the high performance of catalysts in which the existence of monomeric/polymeric vanadate is revealed by Raman spectra studies. Water vapor and SO2 were added to the reacting system for the catalyst deactivation tests. At higher temperatures (T ≥ 350 C), little deactivation was observed over the sulfated V2O5/TiO2 catalysts, showing good durability against SO2 and water vapor, which is compared with deactivation at lower temperatures.

Interaction of Oxygen and $CH_4$ with Molybdenum Oxide Catalysts

  • Kim, C. M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1082-1085
    • /
    • 1997
  • The Near-Edge X-ray Absorption Fine Structure (NEXAFS) technique and Differential Scanning Calorimetry (DSC) were utilized to investigate the reaction of CH4 and O2 on the MoO3/SiO2 catalyst. The NEXAFS results showed that the stoichiometry of the molybdenum oxide catalyst supported on silica was MoO3. MoO3 was reduced to MoO2 when the catalyst was exposed to CH4 at 773 K. NEXAFS results confirm that lattice oxygen is directly related to the process of CH4 oxidation which takes place on the surface of MoO3/SiO2 catalysts. DSC results show that the structure of MoO3 changes around 573 K and this structural change seems to improve the migration of oxygen in the lattice.

Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor

  • Yadav, Ashish;Verma, Nishith
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.448-460
    • /
    • 2018
  • Copper nanoparticle-doped and graphitic carbon nanofibers-covered porous carbon beads were used as an efficient catalyst for treating synthetic phenolic water by catalytic wet air oxidation (CWAO) in a packed bed reactor over 10-30 bar and $180-230^{\circ}C$, with air and water flowing co-currently. A mathematical model based on reaction kinetics assuming degradation in both heterogeneous and homogeneous phases was developed to predict reduction in chemical oxygen demand (COD) under a continuous operation with recycle. The catalyst and process also showed complete COD reduction (>99%) without leaching of Cu against a high COD (~120,000 mg/L) containing industrial wastewater.

The Influence of a Second Metal on the Ni/SiC Catalyst for the Methanation of Syngas

  • Song, Lanlan;Yu, Yue;Wang, Xiaoxiao;Jin, Guoqiang;Wang, Yingyong;Guo, XiangYun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.678-687
    • /
    • 2014
  • The catalytic performance of silicon carbide supported nickel catalysts modified with or without second metal (Co, Cu and Zn) for the methanation of CO has been investigated in a fixed-bed reactor using a feed consisting of 25% CO and 75% $H_2$ without any diluent gas. It has been found that the introduction of Co species can clearly improve the catalytic activity of Ni/SiC catalyst, whereas the addition of Cu or Zn can result in a significant decrease in the catalytic activity. The characterizations by means of XRD, TEM, XPS, CO-TPD and $H_2$-TPR indicate that the addition of Co could decrease the particle size of active metal, increase active sites on the surface of methanation catalyst, improve the chemisorption of CO and enhance the reducibility of methanation catalysts. Additionally, the special interaction between Co species and Ni species is likely favorable for the dissociation of adsorbed CO on the surface of catalyst, and this may also contribute to the high activity of 5Co-Ni/SiC catalyst for CO methanation reaction. For 5Cu-Ni/SiC catalyst and 5Zn-Ni/SiC catalyst, Cu and Zn species could cover partial nickel particles and decrease the chemisorption amount of CO. These could be responsible for the low methanation activity. In addition, a 150h stability test under 2 MPa and $300^{\circ}C$ showed that 5Co-Ni/SiC catalyst was very stable for CO methanation reaction.

Kinetics of Hydrogen Rich Ethanol as Reductant for HC-SCR over $Al_2O_3$ Supported Ag Catalyst (Ag/$Al_2O_3$ 촉매하의 HC-SCR에서 수소 풍부 에탄올의 반응 특성)

  • Lee, Ju-Heon;Park, Jeong-Whan;Kim, Seong-Soo;Yoo, Seung-Joon;Kim, Jin-Gul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.519-525
    • /
    • 2010
  • Ethanol was used as reductant to remove $NO_x$ over Ag/$Al_2O_3$ catalyst via SCR from stationary emission source. Among the tested hydrocarbon reductants, ethanol showed highest de-$NO_x$ performance over the Ag/$Al_2O_3$ catalyst. De-$NO_x$ efficiency of about 83% was obtained in the condition of GHSV 20,000 $hr^{-1}$, $NO_x$ 200 ppm, CO 200 ppm, $O_2$ 13%, $H_2O$ 5% and mole ratio of ethanol/$NO_x$ = 2 between temperature of $300^{\circ}C$ and $400^{\circ}C$. While $SO_2$ presence in the $NO_x$ exhaust suppressed the catalytic activity, catalyst with acid (0.7% $H_2SO_4$) treatment of catalyst showed higher catalytic activity, where In-Situ DRIFT showed S presence over catalyst surface was increased after acid treatment of catalyst. From in-situ DRIFT and SCR results, it was concluded that sulfur presence over the surface of Ag/$Al_2O_3$ catalyst was the dominant factor to control the de-$NO_x$ reaction yield via HC-SCR from the exhausted gas including $SO_2$.