• Title/Summary/Keyword: Supported Chemistry

Search Result 407, Processing Time 0.024 seconds

Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal (Cu/MCM-41 메조포러스 촉매 제조 및 NO 제거 특성)

  • Park, Soo-Jin;Cho, Mi-Hwa;Kim, Seok;Kwon, Soo-Han
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.737-741
    • /
    • 2005
  • In this study, the effect of copper content on the NO removal efficiency by Cu/MCM-41 has been investigated. MCM-41 was prepared by hydrothermal synthesis using a gel mixture of colloidal silica solution and cetyltrimethylammonium. Cu/MCM-41 was manufactured with copper content (5, 10, 20, and 40%) in Cu(II) acetylacetonate. The surface properties of MCM-41 were investigated by using pH, XRD, and FT-IR analyses. $N_2/77K$ adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET's equation and Boer's t-plot methods. NO removal efficiency was confirmed by gas chromatography technique. From the experimental results, the MCM-41 was analyzed to have the surface functional groups of Si-OH and Si-O-Si and the characteristic diffraction lines (100), (110), (200), and (210) corresponding to a hexagonal arrangement structure. The copper content supported on MCM-41 appeared to increase the NO removal efficiency in spite of decreasing the specific surface areas or micropore volumes. Consequently, it was found that the copper content in Cu/MCM-41 played an important role in improving the NO removal efficiency, which was mainly attributed to the catalytic reactions.

The Methane Reforming by $CO_2$ Using Pelletized Co-Ru-Zr-Si Catalyst (성형 Co-Ru-Zr-Si 촉매를 이용한 이산화탄소에 의한 메탄 리포밍)

  • Nam, Jeong-Kwang;Lee, Ji-Hye;Song, Sang-Hoon;Ahn, Hong-Chan;Chang, Tae-Sun;Suh, Jeong-Kwon;Kim, Seong-Bo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.176-182
    • /
    • 2012
  • The methane dry reforming has received the considerable attention in recent years, mainly as an attractive route to produce synthesis gas (CO, $H_2$) from green-house gases ($CH_4$, $CO_2$) for resources. However, this process has not been commercialized due to the high temperature and catalyst deactivation. In this study, Co-Ru-Zr catalysts supported on $SiO_2$ were studied for the characterization of methane dry reforming reaction and the preliminary data for process development were achieved. The crystal structure of catalysts was measured by XRD, the surface area and pore size were analyzed by BET, and the element composition of catalyst were analyzed by EDS. Conversions of methane and carbon dioxide were analyzed by GC. In addition, reaction rate constants were obtained from the reaction kinetic study and the optimum catalyst size that does not affect mass transfer from reactants was also determined. The selected pellet-type catalyst maintained activation for 720 h at $850^{\circ}C$.

Effects of Composition in P-V-Mo Catalysts Supported on Activated Carbon for Vapor Formaldehyde Reaction (기상 포름알데히드 반응을 위한 활성탄에 담지한 P-V-Mo 촉매의 조성에 따른 영향)

  • Lee, So-eun;Kim, Seong-Soo;Jeong, Do-Young;Kang, Yong;Lee, Seung-Jae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.891-897
    • /
    • 2019
  • In this study, heteropoly acid PVMo catalysts were supported on activated carbon with various composition of phosphoric acid ($H_3PO_4$), vanadium (V) pentoxide ($V_2O_5$) and molybdenum (VI) trioxide ($MoO_3$). Catalytic performance was examined at $140^{\circ}C$ for 1hour in vapor formaldehyde. XRD and BET analyses were carried with the catalysts before and after the reaction. Formaldehyde conversion was increased with decreasing Mo and $H_3PO_4$ content and increasing $V_2O_5$ content. Acidity of the catalysts was investigated with $NH_3-TPD$. Crystallinity of the catalysts was relatively low, and surface area was decreased after the reaction. In $NH_3-TPD$ result, the ratio of strong acid site corresponding to $NH_3$ desorption between $400^{\circ}C$ and $500^{\circ}C$ was increased by decreasing $MoO_3$ and $H_3PO_4$ content and increasing $V_2O_5$ content. Therefore, it was found that the strong acid site could affect the catalytic reactivity in vapor formaldehyde conversion.

IR Study on the Adsorption of Carbon Monoxide on Silica Supported Ruthenium-Nickel Alloy (실리카 지지 루테늄-니켈 합금에 있어서 일산화탄소의 흡착에 관한 IR 연구)

  • Park, Sang-Youn;Yoon, Dong-Wook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.349-356
    • /
    • 2006
  • We have investigated adsorption and desorption properties of CO adsorption on silica supported Ru/Ni alloys at various Ru/Ni mole content ratio as well as CO partial pressures using Fourier transform infrared spectrometer (FT-IR). For Ru-$SiO_{2}$ sample, four bands were observed at $2080.0cm^{-1}$, $2021.0{\sim}2030.7cm^{-1}$, $1778.9{\sim}1799.3cm^{-1}$, $1623.8cm^{-1}$ on adsorption and three bands were observed at $2138.7cm^{-1}$, $2069.3cm^{-1}$, $1988.3{\sim}2030.7cm^{-1}$ on vacumn desorption. For Ni-$SiO_{2}$ sample, four bands were observed at $2057.7cm^{-1}$, $2019.1{\sim}2040.3cm^{-1}$, $1862.9{\sim}1868.7cm^{-1}$, $1625.7cm^{-1}$ on adsorption and two bands were observed at $2009.5{\sim}2040.3cm^{-1}$, $1828.4{\sim}1868.7cm^{-1}$ on vacumn desorption. These absorption bands correspond with those of the previous reports approximately. For Ru/Ni(9/1, 8/2, 7/3, 6/4, 5/5; mole content ratio)-$SiO_{2}$ samples, three bands were observed at $2001.8{\sim}2057.7cm^{-1}$, $1812.8{\sim}1926.5cm^{-1}$, $1623.8{\sim}1625.7cm^{-1}$ on adsorption and three bands were observed at $2140.6cm^{-1}$, $2073.1cm^{-1}$, $1969.0{\sim}2057.7cm^{-1}$ on vacumn desorption. The spectrum pattern observed for Ru/Ni-$SiO_{2}$ sample at 9/1 Ru/Ni mole content ratio on CO adsorption and on vacumn desorption is almost like the spectrum pattern observed for Ru-$SiO_{2}$ sample. But the spectrum patterns observed for Ru/Ni-$SiO_{2}$ samples under 8/2 Ru/Ni mole content ratio on CO adsorption and vacumn desorption are almost like the pattern observed for $Ni-SiO_{2}$ sample. It may be suggested surfaces of alloy clusters on the Ru/Ni-$SiO_{2}$ samples contain more Ni components than the mole content ratio of the sample considering the above phenomena. With Ru/Ni-$SiO_{2}$ samples the absorption band shifts may be ascribed to variations of surface concentration, strain variation due to atomic size difference, variation of bonding energy and electronic densities, and changes of surface geometries according to surface concentration variation. Studies for CO adsorption on Ru/Ni alloy cluster surface by LEED and Auger spectroscopy, interation between Ru/Ni alloy cluster and $SiO_{2}$, and MO calculation for the system would be needed to look into the phenomena.

Oxidation of Isopropyl Alcohol in Air by a Catalytic Plasma Reactor System (촉매-플라즈마 반응 시스템을 이용한 아이소프로필 알코올 산화)

  • Jo, Jin Oh;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.531-537
    • /
    • 2014
  • A catalytic plasma reactor was employed for the oxidation of isopropyl alcohol (IPA) classified as a volatile organic compound (VOC). Copper oxide (Cu : 0.5% (w/w)) supported on a multichannel porous ceramic consisting of ${\alpha}-Al_2O_3$ was used as a catalyst, which was directly exposed to the plasma created in it. The effects of discharge voltage and reaction temperature on the concentrations of IPA and its byproducts were examined to understand the behavior of the catalytic plasma reactor. Without thermal insulation, the reactor temperature increased up to $120^{\circ}C$ at an applied voltage of 17 kV (discharge power : 28 W), and the IPA at a flow rate of $1L\;min^{-1}$ ($O_2$ : 10% (v/v); IPA : 1000 ppm) was completely removed. At temperatures below $120^{\circ}C$, however, besides the desirable product $CO_2$, several unwanted byproducts such as acetone, formaldehyde and CO were also formed from IPA. On the other hand, when the reactor was thermally insulated, the plasma discharge increased the temperature up to $265^{\circ}C$ under the same condition and most of IPA was oxidized to $CO_2$. Without loading CuO on the ceramic support, the plasma discharge in the thermally insulated reactor produced nearly equal amounts of $CO_2$ and CO. On comparison, with the catalyst alone (temperature : $265^{\circ}C$), more than 70% of the removed IPA was simply converted into another type of VOC (acetone), indicating that the catalyst assisted by the plasma is more effective in the oxidation of IPA than that of the catalyst-alone process.

Preparation of Uniform Porous Carbon from Mesophase Pitch and Its Characteristics of Catalyst Support for the Direct Methanol Fuel Cell (메조페이스 핏치로부터 균질한 다공성 탄소 제조 및 이를 이용한 직접 메탄올 연료전지의 촉매 담지체 특성)

  • Nam, Ki-Don;Kim, Tae-Jin;Kim, Sang-Kyung;Lee, Byoung-Rok;Peck, Dong-Hyun;Ryu, Seung-Kon;Jung, Doo-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.223-228
    • /
    • 2006
  • Pore-size controlled porous carbons for the catalyst supports of the direct methanol fuel cell were prepared from the mesophase pitch by using the silica spheres with different sizes. Pitch solution in THF and spheres were mixed, carbonized and etched by 5 M NaOH to make porous carbon. Specific surface area of the porous carbons was $14.7{\sim}87.7m^2/g$ and average pore diameter was 50~550 nm which were dependent on the size of silica spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared porous carbon supports. The electro-oxidation activity of the supported 60 wt% Pt-Ru catalysts was measured by cyclic voltammetry and unit cell test. For the 60 wt% Pt-Ru/porous carbon synthesized by 50 nm silica, current density value in the cyclic voltammetry test was $123mA/cm^2$ at 0.4 V and peak power density in the unit cell test were 105 and $162mW/cm^2$ under oxygen at 60 and $80^{\circ}C$, respectively.

A Study on Reaction Characteristics of H2 SCR using Pt/TiO2 Catalyst (Pt/TiO2 촉매의 H2 SCR 반응 특성에 관한 연구)

  • Kim, Sung Su;Choi, Hyun Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • This work investigated the catalytic reaction characteristics of $H_2$ SCR applied at low temperature ($80{\sim}150^{\circ}C$) using Pt catalyst supported on $TiO_2$. The experiments were performed in terms of $H_2O$, $O_2$ in reaction gas, calcination temperature of the Pt catalyst, $H_2$/NOx mole ratio, space velocity. $H_2O$ was an inhibitor of reaction on $H_2$ SCR using Pt catalyst, catalytic performance increased as $O_2$ concentration decreased. Nevertheless, $NH_3$ slip generated by the reaction between NOx and $H_2$ in the absence of $O_2$. While it was effective to calcine less than $600^{\circ}C$ by phase transition and the catalytic performance increased as $H_2$/NOx mole ratio increased. However, $H_2$ slip was not observed at that increase mole ratio by $H_2$ oxidation to $H_2O$.

A Study on Low-Temperature Oxidation Reactivity of Pt/ZrO2·SO42-Catalyst (ZrO2·SO42-에 담지된 백금촉매의 저온산화반응성에 대한 연구)

  • Kim, Kiseok;Lee, Tae Jung;Kim, Byoung Sam;Kim, Du Soung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.141-148
    • /
    • 1998
  • Reactivity of Pt catalysts(0.2, 0.5 wt% Pt) supported on solid super acid, $ZrO_2$ $SO_4{^{2-}}$ for low-temperature oxidation was investigated for complete oxidation of cyclohexane. Catalytic activity measured as reactant conversion in a packed-bed tubular reactor increased in accordance with the acidity and specific surface area of the catalyst activity and specific surface area of $Pt/ZrO_2$ $SO_4{^{2-}}$ catalyst were diminished by adding potassium during catalyst preparation. the catalyst activity decreased in accordance with the amount of potassium added. In addition, $Pt/ZrO_2$ $SO_4{^{2-}}$ catalyst exhibited an activity greater than that of a $Pt/SiO_2$ or $Pt/Al_2O_3$ catalyst possessing much larger specific surface area at $250^{\circ}C$ for the reactant stream of 15.000 ppm cyclohexane concentration and $18,000hr^{-1}$ space velocity, a cyclohexane conversion as high as 96% was obtained over 0.2 wt% $Pt/ZrO_2$ $SO_4{^{2-}}$, whereas cyclohexane conversions over 0.2 wt% $Pt/SiO_2$ and 0.2 wt% $Pt/Al_2O_3$ were 83 and 79%, respectively.

  • PDF

Formation of D-Glucose Isomerase by Streptomyces sp. (Streptomyces sp.에 의한 포도당 이성화효소의 생성)

  • Rhee, In-Koo;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.3
    • /
    • pp.173-180
    • /
    • 1980
  • A source of D-xylose was required for the enhanced production of D-glucose isomerase of Streptomyces sp. strain K-17. D-glucose supported the luxuriant growth of the organism as well as D-xylose, but D-glucose isomerase activity was hardly detected in the D-glucose-grown cells. When the D-glucose-grown cells were incubated aerobically for a few hours in 0.5% xylose solution in 0.05 M phosphate buffer, pH 7.0, it was found that inductive formation of D-glucose isomerase occurred in the cells without multiplication. In the non-growth phase of cells the inductive formation of D-glucose isomerase occurred because a source of nitrogen for the synthesis of enzymes was obtained from turnover of protein accumulated in cells. D-ribose, L-arabinose, D-glucose, D-mannose, citrate, succinate and tartrate could not induce the formation of D-glucose isomerase, but D-xylose could induce. Inductinn of D-glucose isomerase was repressed by D-glucose and its catabolites : glycerol, succinate and citrate. Inductive formation of the enzymes in the non-growth phase was stimulated by $Ba^{2+}$, $Mg^{2+}$ and $Co^{2+}$, and inhibited by C $u^{2+}$, C $d^{2+}$, A $g^{+}$and H $g^{2+}$. The synthesis of enzymes in the induction system composed of 0.5% xylose solution was disrupted by actinomycin D, streptomycin, chloramphenicol, kanamycin, tetracycline, p-chloromercuribenzo ate, arsenate and 2, 4-dinitrophenol, but not disrupted by mitomycin C and penicillin G.icillin G.

  • PDF

Studies of Solvolyses of Di-n-butyl Phosphorochloridate by Extended Grunwald-Winstein Equation (확장된 Grunwald-Winstein 식에 의한 Di-n-butyl Phosphorochloridate의 가용매 분해반응 연구)

  • Kang, Min Sung;Kim, Cheul Ju;Kang, Suk Jin;Koh, Han Joong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.373-378
    • /
    • 2015
  • The solvolysis rate constants of di-n-butyl phosphorochloridate ((CH3CH2CH2CH2O)2POCI, 1) in 28 different solvents are well correlated with the extended Grunwald-Winstein equation, using the NT solvent nucleophilicity scale and YCl solvent ionizing scale, with the sensitivities values of 1.40 and 0.42 for l and m, respectively. These l and m values can be considered to support an SN2 reaction pathway. This interpretation is further supported by the activation parameters, i.e., relatively small positive ΔH (8.0 to 15.9 kcal·mol−1 ) values and large negative ΔS (−25.8 to −53.1 cal·mol−1 ·K−1 ) values, the Kivinen’s n values (0.9~1.7), and the solvent kinetic isotope effect (1.62).