• 제목/요약/키워드: Support Vector Regressor

검색결과 8건 처리시간 0.02초

Research on the application of Machine Learning to threat assessment of combat systems

  • Seung-Joon Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권7호
    • /
    • pp.47-55
    • /
    • 2023
  • 본 논문에서는 전투체계 위협지수를 머신러닝 모델 중 Gradient Boosting Regreesor, Suppor Vector Regressor를 통해 예측하는 방법을 제시한다. 현재 전투체계는 안전성과 신뢰성이 중시되는 소프트웨어이므로 신뢰성이 보장되지 않은 AI 기술의 적용을 정책상 제한하고 있으며, 이로 인하여 전력화된 국내 전투체계는 AI 기술을 탑재하고 있지 않다. 하지만 AI의 전력화를 목표로 하는 국방부의 정책 방향에 대응하기 위하여, 전투체계의 머신러닝 적용에 필요한 기반 기술을 확보하기 위한 연구를 실시하였다. 이 연구는 위협지수 평가에 필요한 데이터를 수집한 뒤 데이터 가공 및 정제, 머신러닝 모델 선정 및 최적의 하이퍼 파리미터를 선정하여 학습된 모델의 예측 정확도를 판단하였다. 그 결과 테스트 데이터에 대한 모델 점수가 99점 이상으로 도출되었으며 전투체계에 머신러닝 모델의 적용 가능성을 확인하였다.

Estimation of lightweight aggregate concrete characteristics using a novel stacking ensemble approach

  • Kaloop, Mosbeh R.;Bardhan, Abidhan;Hu, Jong Wan;Abd-Elrahman, Mohamed
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.499-512
    • /
    • 2022
  • This study investigates the efficiency of ensemble machine learning for predicting the lightweight-aggregate concrete (LWC) characteristics. A stacking ensemble (STEN) approach was proposed to estimate the dry density (DD) and 28 days compressive strength (Fc-28) of LWC using two meta-models called random forest regressor (RFR) and extra tree regressor (ETR), and two novel ensemble models called STEN-RFR and STEN-ETR, were constructed. Four standalone machine learning models including artificial neural network, gradient boosting regression, K neighbor regression, and support vector regression were used to compare the performance of the proposed models. For this purpose, a sum of 140 LWC mixtures with 21 influencing parameters for producing LWC with a density less than 1000 kg/m3, were used. Based on the experimental results with multiple performance criteria, it can be concluded that the proposed STEN-ETR model can be used to estimate the DD and Fc-28 of LWC. Moreover, the STEN-ETR approach was found to be a significant technique in prediction DD and Fc-28 of LWC with minimal prediction error. In the validation phase, the accuracy of the proposed STEN-ETR model in predicting DD and Fc-28 was found to be 96.79% and 81.50%, respectively. In addition, the significance of cement, water-cement ratio, silica fume, and aggregate with expanded glass variables is efficient in modeling DD and Fc-28 of LWC.

영화 관객 수 예측을 위한 기계학습 기법의 성능 평가 연구 (A Study on the Performance Evaluation of Machine Learning for Predicting the Number of Movie Audiences)

  • 정찬미;민대기
    • 한국전자거래학회지
    • /
    • 제25권2호
    • /
    • pp.49-63
    • /
    • 2020
  • 영화 제작에 막대한 비용이 투입되지만 관객수요는 매우 불확실하기 때문에 개선된 수요예측은 수익 개선을 위한 의사결정의 중요 수단으로 활용될 수 있다. 본 연구에서는 영화의 개봉 후 수요를 예측함에 있어 기계학습 기법의 적용 타당성을 예측 성능의 관점에서 검증하였다. 분석결과를 종합하면 다음과 같다. 첫째, 대안변수에 대한 통계적 검증 결과 기본 영화 특성(감독, 배우)과 함께 개봉 후 2주차까지의 스크린수, 상영횟수, 관객수, 주요 배우에 대한 관심도 등 시계열 자료가 수요예측에 유의미한 것을 확인하였다. 둘째, Random Forest Classifier와 SVM(Support Vector Machine) 등 분류 기반 기계학습 기법과 Random Forest Regressor와 k-NN Regressor와 같은 회귀모형 기반 기계학습 기법에 적용하여 예측 성능을 평가한 결과, Random Forest 기법이 우수한 결과를 보였다. 셋째, 누적관객수가 1분위보다 작은 영화에서 회귀모형 기반 기법은 낮은 예측 정확도를 보였으며, 분류기반 기법은 반대로 가장 우수한 결과를 얻었다. 즉, 영화 수요의 분포 특성에 따라서 차별화된 기계학습 기법을 적용하는 것이 필요하다.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

A Novel Approach to Predict the Longevity in Alzheimer's Patients Based on Rate of Cognitive Deterioration using Fuzzy Logic Based Feature Extraction Algorithm

  • Sridevi, Mutyala;B.R., Arun Kumar
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.79-86
    • /
    • 2021
  • Alzheimer's is a chronic progressive disease which exhibits varied symptoms and behavioural traits from person to person. The deterioration in cognitive abilities is more noticeable through their Activities and Instrumental Activities of Daily Living rather than biological markers. This information discussed in social media communities was collected and features were extracted by using the proposed fuzzy logic based algorithm to address the uncertainties and imprecision in the data reported. The data thus obtained is used to train machine learning models in order to predict the longevity of the patients. Models built on features extracted using the proposed algorithm performs better than models trained on full set of features. Important findings are discussed and Support Vector Regressor with RBF kernel is identified as the best performing model in predicting the longevity of Alzheimer's patients. The results would prove to be of high value for healthcare practitioners and palliative care providers to design interventions that can alleviate the trauma faced by patients and caregivers due to chronic diseases.

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.

기후변화 시나리오의 기온상승에 따른 낙동강 남세균 발생 예측을 위한 데이터 기반 모델 시뮬레이션 (Data-driven Model Prediction of Harmful Cyanobacterial Blooms in the Nakdong River in Response to Increased Temperatures Under Climate Change Scenarios)

  • 장가연;조민경;김자연;김상준;박힘찬;박준홍
    • 한국물환경학회지
    • /
    • 제40권3호
    • /
    • pp.121-129
    • /
    • 2024
  • Harmful cyanobacterial blooms (HCBs) are caused by the rapid proliferation of cyanobacteria and are believed to be exacerbated by climate change. However, the extent to which HCBs will be stimulated in the future due to increased temperature remains uncertain. This study aims to predict the future occurrence of cyanobacteria in the Nakdong River, which has the highest incidence of HCBs in South Korea, based on temperature rise scenarios. Representative Concentration Pathways (RCPs) were used as the basis for these scenarios. Data-driven model simulations were conducted, and out of the four machine learning techniques tested (multiple linear regression, support vector regressor, decision tree, and random forest), the random forest model was selected for its relatively high prediction accuracy. The random forest model was used to predict the occurrence of cyanobacteria. The results of boxplot and time-series analyses showed that under the worst-case scenario (RCP8.5 (2100)), where temperature increases significantly, cyanobacterial abundance across all study areas was greatly stimulated. The study also found that the frequencies of HCB occurrences exceeding certain thresholds (100,000 and 1,000,000 cells/mL) increased under both the best-case scenario (RCP2.6 (2050)) and worst-case scenario (RCP8.5 (2100)). These findings suggest that the frequency of HCB occurrences surpassing a certain threshold level can serve as a useful diagnostic indicator of vulnerability to temperature increases caused by climate change. Additionally, this study highlights that water bodies currently susceptible to HCBs are likely to become even more vulnerable with climate change compared to those that are currently less susceptible.