• Title/Summary/Keyword: Support Vector Model

Search Result 873, Processing Time 0.024 seconds

Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine (Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.665-670
    • /
    • 2014
  • A SVM is a kind of binary classifier in order to find optimal hyperplane which separates training data into two groups. Due to its remarkable performance, the SVM is applied in various fields such as inductive inference, binary classification or making predictions. Also it is a representative black box model; there are plenty of actively discussed researches about analyzing trained SVM classifier. This paper conducts a study on a method that is automatically detecting the line-shaped echoes, sun strobe echo and radial interference echo, using the SVM algorithm because the line-shaped echoes appear relatively often and disturb weather forecasting process. Using a spatial clustering method and corrected reflectivity data in the weather radar, the training data is made up with mean reflectivity, size, appearance, centroid altitude and so forth. With actual occurrence cases of the line-shaped echoes, the trained SVM classifier is verified, and analyzed its characteristics using the decision tree method.

Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors

  • Chahnasir, E. Sadeghipour;Zandi, Y.;Shariati, M.;Dehghani, E.;Toghroli, A.;Mohamad, E. Tonnizam;Shariati, A.;Safa, M.;Wakil, K.;Khorami, M.
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.413-424
    • /
    • 2018
  • The factors affecting the shear strength of the angle shear connectors in the steel-concrete composite beams can play an important role to estimate the efficacy of a composite beam. Therefore, the current study has aimed to verify the output of shear capacity of angle shear connector according to the input provided by Support Vector Machine (SVM) coupled with Firefly Algorithm (FFA). SVM parameters have been optimized through the use of FFA, while genetic programming (GP) and artificial neural networks (ANN) have been applied to estimate and predict the SVM-FFA models' results. Following these results, GP and ANN have been applied to develop the prediction accuracy and generalization capability of SVM-FFA. Therefore, SVM-FFA could be performed as a novel model with predictive strategy in the shear capacity estimation of angle shear connectors. According to the results, the Firefly algorithm has produced a generalized performance and be learnt faster than the conventional learning algorithms.

Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique

  • Kim, Yu Jeong;Lee, Dong Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.213-219
    • /
    • 2020
  • In this paper, we propose a classification analysis method for diagnosing and predicting problematic smartphone use in order to provide policy data on problematic smartphone use, which is getting worse year after year. Attempts have been made to identify key variables that affect the study. For this purpose, the classification rates of Decision Tree, Random Forest, and Support Vector Machine among machine learning analysis methods, which are artificial intelligence methods, were compared. The data were from 25,465 people who responded to the '2018 Problematic Smartphone Use Survey' provided by the Korea Information Society Agency and analyzed using the R statistical package (ver. 3.6.2). As a result, the three classification techniques showed similar classification rates, and there was no problem of overfitting the model. The classification rate of the Support Vector Machine was the highest among the three classification methods, followed by Decision Tree and Random Forest. The top three variables affecting the classification rate among smartphone use types were Life Service type, Information Seeking type, and Leisure Activity Seeking type.

Fuzzy Support Vector Machine for Pattern Classification of Time Series Data of KOSPI200 Index (시계열 자료 코스피200의 패턴분류를 위한 퍼지 서포트 벡타 기계)

  • Lee, S.Y.;Sohn, S.Y.;Kim, C.E.;Lee, Y.B.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.52-56
    • /
    • 2004
  • The Information of classification and estimate about KOSPI200 index`s up and down in the stock market becomes an important standard of decision-making in designing portofolio in futures and option market. Because the coming trend of time series patterns, an economic indicator, is very subordinate to the most recent economic pattern, it is necessary to study the recent patterns most preferentially. This paper compares classification and estimated performance of SVM(Support Vector Machine) and Fuzzy SVM model that are getting into the spotlight in time series analyses, neural net models and various fields. Specially, it proves that Fuzzy SVM is superior by presenting the most suitable dimension to fuzzy membership function that has time series attribute in accordance with learning Data Base.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

Generating Data and Applying Machine Learning Methods for Music Genre Classification (음악 장르 분류를 위한 데이터 생성 및 머신러닝 적용 방안)

  • Bit-Chan Eom;Dong-Hwi Cho;Choon-Sung Nam
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.57-64
    • /
    • 2024
  • This paper aims to enhance the accuracy of music genre classification for music tracks where genre information is not provided, by utilizing machine learning to classify a large amount of music data. The paper proposes collecting and preprocessing data instead of using the commonly employed GTZAN dataset in previous research for genre classification in music. To create a dataset with superior classification performance compared to the GTZAN dataset, we extract specific segments with the highest energy level of the onset. We utilize 57 features as the main characteristics of the music data used for training, including Mel Frequency Cepstral Coefficients (MFCC). We achieved a training accuracy of 85% and a testing accuracy of 71% using the Support Vector Machine (SVM) model to classify into Classical, Jazz, Country, Disco, Soul, Rock, Metal, and Hiphop genres based on preprocessed data.

Data Mining based Forest Fires Prediction Models using Meteorological Data (기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.521-529
    • /
    • 2020
  • Forest fires are one of the most important environmental risks that have adverse effects on many aspects of life, such as the economy, environment, and health. The early detection, quick prediction, and rapid response of forest fires can play an essential role in saving property and life from forest fire risks. For the rapid discovery of forest fires, there is a method using meteorological data obtained from local sensors installed in each area by the Meteorological Agency. Meteorological conditions (e.g., temperature, wind) influence forest fires. This study evaluated a Data Mining (DM) approach to predict the burned area of forest fires. Five DM models, e.g., Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), Decision Tree (DT), Random Forests (RF), and Deep Neural Network (DNN), and four feature selection setups (using spatial, temporal, and weather attributes), were tested on recent real-world data collected from Gyeonggi-do area over the last five years. As a result of the experiment, a DNN model using only meteorological data showed the best performance. The proposed model was more effective in predicting the burned area of small forest fires, which are more frequent. This knowledge derived from the proposed prediction model is particularly useful for improving firefighting resource management.

Classification of Forest Vertical Structure Using Machine Learning Analysis (머신러닝 기법을 이용한 산림의 층위구조 분류)

  • Kwon, Soo-Kyung;Lee, Yong-Suk;Kim, Dae-Seong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.229-239
    • /
    • 2019
  • All vegetation colonies have layered structure. This layer is called 'forest vertical structure.' Nowadays it is considered as an important indicator to estimate forest's vital condition, diversity and environmental effect of forest. So forest vertical structure should be surveyed. However, vertical structure is a kind of inner structure, so forest surveys are generally conducted through field surveys, a traditional forest inventory method which costs plenty of time and budget. Therefore, in this study, we propose a useful method to classify the vertical structure of forests using remote sensing aerial photographs and machine learning capable of mass data mining in order to reduce time and budget for forest vertical structure investigation. We classified it as SVM (Support Vector Machine) using RGB airborne photos and LiDAR (Light Detection and Ranging) DSM (Digital Surface Model) DTM (Digital Terrain Model). Accuracy based on pixel count is 66.22% when compared to field survey results. It is concluded that classification accuracy of layer classification is relatively high for single-layer and multi-layer classification, but it was concluded that it is difficult in multi-layer classification. The results of this study are expected to further develop the field of machine learning research on vegetation structure by collecting various vegetation data and image data in the future.

Prediction of Distillation Column Temperature Using Machine Learning and Data Preprocessing (머신 러닝과 데이터 전처리를 활용한 증류탑 온도 예측)

  • Lee, Yechan;Choi, Yeongryeol;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • A distillation column, which is a main facility of the chemical process, separates the desired product from a mixture by using the difference of boiling points. The distillation process requires the optimization and the prediction of operation because it consumes much energy. The target process of this study is difficult to operate efficiently because the composition of feed flow is not steady according to the supplier. To deal with this problem, we could develop a data-driven model to predict operating conditions. However, data preprocessing is essential to improve the predictive performance of the model because the raw data contains outlier and noise. In this study, after optimizing the predictive model based long-short term memory (LSTM) and Random forest (RF), we used a low-pass filter and one-class support vector machine for data preprocessing and compared predictive performance according to the method and range of the preprocessing. The performance of the predictive model and the effect of the preprocessing is compared by using R2 and RMSE. In the case of LSTM, R2 increased from 0.791 to 0.977 by 23.5%, and RMSE decreased from 0.132 to 0.029 by 78.0%. In the case of RF, R2 increased from 0.767 to 0.938 by 22.3%, and RMSE decreased from 0.140 to 0.050 by 64.3%.

A Classification Model for Illegal Debt Collection Using Rule and Machine Learning Based Methods

  • Kim, Tae-Ho;Lim, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.93-103
    • /
    • 2021
  • Despite the efforts of financial authorities in conducting the direct management and supervision of collection agents and bond-collecting guideline, the illegal and unfair collection of debts still exist. To effectively prevent such illegal and unfair debt collection activities, we need a method for strengthening the monitoring of illegal collection activities even with little manpower using technologies such as unstructured data machine learning. In this study, we propose a classification model for illegal debt collection that combine machine learning such as Support Vector Machine (SVM) with a rule-based technique that obtains the collection transcript of loan companies and converts them into text data to identify illegal activities. Moreover, the study also compares how accurate identification was made in accordance with the machine learning algorithm. The study shows that a case of using the combination of the rule-based illegal rules and machine learning for classification has higher accuracy than the classification model of the previous study that applied only machine learning. This study is the first attempt to classify illegalities by combining rule-based illegal detection rules with machine learning. If further research will be conducted to improve the model's completeness, it will greatly contribute in preventing consumer damage from illegal debt collection activities.