• 제목/요약/키워드: Support Vector Machine-Regression

검색결과 381건 처리시간 0.023초

An assessment of machine learning models for slump flow and examining redundant features

  • Unlu, Ramazan
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.565-574
    • /
    • 2020
  • Over the years, several machine learning approaches have been proposed and utilized to create a prediction model for the high-performance concrete (HPC) slump flow. Despite HPC is a highly complex material, predicting its pattern is a rather ambitious process. Hence, choosing and applying the correct method remain a crucial task. Like some other problems, prediction of HPC slump flow suffers from abnormal attributes which might both have an influence on prediction accuracy and increases variance. In recent years, different studies are proposed to optimize the prediction accuracy for HPC slump flow. However, more state-of-the-art regression algorithms can be implemented to create a better model. This study focuses on several methods with different mathematical backgrounds to get the best possible results. Four well-known algorithms Support Vector Regression, M5P Trees, Random Forest, and MLPReg are implemented with optimum parameters as base learners. Also, redundant features are examined to better understand both how ingredients influence on prediction models and whether possible to achieve acceptable results with a few components. Based on the findings, the MLPReg algorithm with optimum parameters gives better results than others in terms of commonly used statistical error evaluation metrics. Besides, chosen algorithms can give rather accurate results using just a few attributes of a slump flow dataset.

Forecasting daily PM10 concentrations in Seoul using various data mining techniques

  • Choi, Ji-Eun;Lee, Hyesun;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제25권2호
    • /
    • pp.199-215
    • /
    • 2018
  • Interest in $PM_{10}$ concentrations have increased greatly in Korea due to recent increases in air pollution levels. Therefore, we consider a forecasting model for next day $PM_{10}$ concentration based on the principal elements of air pollution, weather information and Beijing $PM_{2.5}$. If we can forecast the next day $PM_{10}$ concentration level accurately, we believe that this forecasting can be useful for policy makers and public. This paper is intended to help forecast a daily mean $PM_{10}$, a daily max $PM_{10}$ and four stages of $PM_{10}$ provided by the Ministry of Environment using various data mining techniques. We use seven models to forecast the daily $PM_{10}$, which include five regression models (linear regression, Randomforest, gradient boosting, support vector machine, neural network), and two time series models (ARIMA, ARFIMA). As a result, the linear regression model performs the best in the $PM_{10}$ concentration forecast and the linear regression and Randomforest model performs the best in the $PM_{10}$ class forecast. The results also indicate that the $PM_{10}$ in Seoul is influenced by Beijing $PM_{2.5}$ and air pollution from power stations in the west coast.

Training for Huge Data set with On Line Pruning Regression by LS-SVM

  • Kim, Dae-Hak;Shim, Joo-Yong;Oh, Kwang-Sik
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.137-141
    • /
    • 2003
  • LS-SVM(least squares support vector machine) is a widely applicable and useful machine learning technique for classification and regression analysis. LS-SVM can be a good substitute for statistical method but computational difficulties are still remained to operate the inversion of matrix of huge data set. In modern information society, we can easily get huge data sets by on line or batch mode. For these kind of huge data sets, we suggest an on line pruning regression method by LS-SVM. With relatively small number of pruned support vectors, we can have almost same performance as regression with full data set.

  • PDF

DEVELOPMENT OF A MAJORITY VOTE DECISION MODULE FOR A SELF-DIAGNOSTIC MONITORING SYSTEM FOR AN AIR-OPERATED VALVE SYSTEM

  • KIM, WOOSHIK;CHAI, JANGBOM;KIM, INTAEK
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.624-632
    • /
    • 2015
  • A self-diagnostic monitoring system is a system that has the ability to measure various physical quantities such as temperature, pressure, or acceleration from sensors scattered over a mechanical system such as a power plant, in order to monitor its various states, and to make a decision about its health status. We have developed a self-diagnostic monitoring system for an air-operated valve system to be used in a nuclear power plant. In this study, we have tried to improve the self-diagnostic monitoring system to increase its reliability. We have implemented three different machine learning algorithms, i.e., logistic regression, an artificial neural network, and a support vector machine. After each algorithm performs the decision process independently, the decision-making module collects these individual decisions and makes a final decision using a majority vote scheme. With this, we performed some simulations and presented some of its results. The contribution of this study is that, by employing more robust and stable algorithms, each of the algorithms performs the recognition task more accurately. Moreover, by integrating these results and employing the majority vote scheme, we can make a definite decision, which makes the self-diagnostic monitoring system more reliable.

SVM-Guided Biplot of Observations and Variables

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제20권6호
    • /
    • pp.491-498
    • /
    • 2013
  • We consider support vector machines(SVM) to predict Y with p numerical variables $X_1$, ${\ldots}$, $X_p$. This paper aims to build a biplot of p explanatory variables, in which the first dimension indicates the direction of SVM classification and/or regression fits. We use the geometric scheme of kernel principal component analysis adapted to map n observations on the two-dimensional projection plane of which one axis is determined by a SVM model a priori.

머신러닝을 이용한 경기도 화재위험요인 예측분석 (Predictive Analysis of Fire Risk Factors in Gyeonggi-do Using Machine Learning)

  • 서민송;에베르 엔리케 카스티요 오소리오;유환희
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.351-361
    • /
    • 2021
  • 화재는 막대한 재산과 인명피해를 초래하고 있으며 크고 작은 화재가 지속해서 발생하고 있다. 따라서 본 연구는 화재 유형별로 화재에 영향을 미치는 각종 위험요인을 예측하고자 한다. 전국에서 화재 발생 건수가 가장 많은 경기도를 대상으로 화재발생위험요인 예측분석을 실시하였다. 또한, 머신러닝 방법인 SVM, RF, GBRT를 활용하여 각 모형의 정확성을 MAE,RMSE를 통해 적합도가 높은 모형을 제시하였으며 이를 토대로 경기도 화재발생요인 예측분석을 실시하였다. 머신러닝 방법 3가지를 비교분석한 결과 RF가 MAE 1.517, RMSE 1.820으로 나타났으며 MAE, RMSE 검증데이터 및 시험데이터의 경우 MAE값 0.024, RMSE값 0.12의 차이로 매우 유사하게 나타나 가장 우수한 예측력으로 나타났다. RF기법을 적용하여 분석한 결과 공통적으로 발화장소가 화재발생에 가장 큰 영향을 주는 위험요인으로 나타났다. 이러한 연구 결과는 화재발생에 영향을 주는 요인들의 위험순서를 파악하여 화재안전관리의 유용한 자료로 활용될 것으로 예상된다.

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • 제18권6호
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Support vector machine for prediction of the compressive strength of no-slump concrete

  • Sobhani, J.;Khanzadi, M.;Movahedian, A.H.
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.337-350
    • /
    • 2013
  • The sensitivity of compressive strength of no-slump concrete to its ingredient materials and proportions, necessitate the use of robust models to guarantee both estimation and generalization features. It was known that the problem of compressive strength prediction owes high degree of complexity and uncertainty due to the variable nature of materials, workmanship quality, etc. Moreover, using the chemical and mineral additives, superimposes the problem's complexity. Traditionally this property of concrete is predicted by conventional linear or nonlinear regression models. In general, these models comprise lower accuracy and in most cases they fail to meet the extrapolation accuracy and generalization requirements. Recently, artificial intelligence-based robust systems have been successfully implemented in this area. In this regard, this paper aims to investigate the use of optimized support vector machine (SVM) to predict the compressive strength of no-slump concrete and compare with optimized neural network (ANN). The results showed that after optimization process, both models are applicable for prediction purposes with similar high-qualities of estimation and generalization norms; however, it was indicated that optimization and modeling with SVM is very rapid than ANN models.