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Training for Huge Data set with
On Line Pruning Regression by LS-SVM
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Abstract

LS-SVM(least squares support vector machine) is a widely applicable and useful
machine learning technique for classification and regression analysis. LS-SVM can
be a good substitute for statistical method but computational difficulties are still
remained to operate the inversion of matrix of huge data set. In modern
information society, we can easily get huge data sets by on line or batch mode.
For these kind of huge data sets, we suggest an on line pruning regression
method by LS-SVM. With relatively small number of pruned support vectors, we
can have almost same performance as regression with full data set.
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1. Introduction

The least squares support vector machine(LS-SVM), a modified version of support vector
machine introduced by Vapnik(1995, 1998) in a least squares sense, has been proposed for
classification and regression by Suykens and Vanderwalle(1999). In LS-SVM the solution is
given by a linear system instead of a quadratic program problem. The fact that LS-SVM
has an explicit primal-dual formulations has a number of advantages. However a drawback
of LS-SVM is that the sparseness is lost differently from in Vapnik’'s SVM. Suykens et
al.(2000) suggested a procedure imposing the sparseness by gradually pruning the support
vectors based on sorted absolute values of optimal lagrange multipliers which result from
the solutions to the linear system of LS-SVM. And they illustrate that support vectors
can be decreased from 500 to less than 100 without loss of performance in the sine
example.

But the LS-SVM algorithms are trained in batch form, which is not suited to the real
application such as on line system and control, where the data come in sequentially or the
size of data is huge. So the on line training for the regression is needed urgently in real
application. ‘

We suggest an on line pruning regression method by LS-SVM which always uses the
fixed number of support vectors and their corresponding outputs being modified at each
time of a new data point coming in. These modified pruned support vectors and their
corresponding outputs are used to predict the regression function of the testing data set.
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The performance of the proposed method is almost same with that of the method of
Suykens et al.(2000), and not much inferior to that of the LS-SVM based on full data set.

2. LS-SVM Regression

Let the training data set be denoted by { x ; ¥; } =), with each input x ; € R and the
output y; which is the output corresponding to x ;. The LS-SVM regression takes the form
Ax)=w'¢(x)+b

. . . . d,
where the term b is a bias term. Here the feature mapping function ¢( ):Rd—>R maps

the input space to the higher dimensional feature space where the dimension d/ is defined

in an implicit way. The optimization problem is defined with a regularization parameter C
as

Minimize-%— w' w + 7(" ﬁl e? (1)

over { w, b, e} subject to equality constraints
y;= w' ¢( X i)+b+€j R l-zl,"',N.

The Lagrangian function can be constructed as
L( w, b,e:a)=—% w w + 7C ﬁle?— gla/i( welx)+bt+te—y;) (2)

where a;'s are the Lagrange multipliers. The Karush-Kuhn-Tucker(Smola and Scholkopf,

1998) conditions for optimality are given by

LZO_) w= ﬁ az'¢(xi)
w =]

)
%:0 - ﬁlal:
g_eLZFO-’aFCei,z 1, N
g(fi:O - wé(x)tb+te;—y;=0, i=1,,N,
with solution
[01 .Q+1C"1I][i] - [(}),] (3)

with y=(y, =, yn, 1=(,-,1), a=(a;,,eay), and 2={2,} where 2,=
Mx)o(x)=K(x, x,), BI=1,,N, which are obtained from the application of
Mercer’'s conditions(1909). Several choices of the kernel K(-, +) are possible.

By solving the linear equation (3) the optimal bias and Lagrange multipliers, & and

] ;/'s can be obtained, then the optimal target value for the given x is obtained as
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F(0= 34 Kz z) + b @

3. On line Pruning Regression by LS-SVM

The loss of sparseness of LS-SVM follows from the fact that Lgrange multipliers are
proportional to the error at the data point. However, by sorting absolute values of a; one

can evaluate which data are most significant for the contribution to LS-SVM model.
Suyens et al(2000) imposed the sparseness by gradually eliminating the least significant
data points from the training data set and reestimating LS-SVM by the following

procedures.

(a) Train LS-SVM based on N data points.

(b) Remove 'a small amount of data points(e.g. 5%) with smallest absolute
values of a;'s.

(c) Retrain LS-SVM based on the reduced training data set.

(d) Iterate (b) and (¢) until the performance degrades.

Since the pruning method above operate in a batch mode, the inversion of matrix in the
linear system of LS-SVM for training the huge data set is computationally difficult.

Now we propose a solution to train the huge data set for LS-SVM. Starting with the
fixed number, Nw, of data points of the training data set, we can obtain the optimal
Lagrange multipliers and bias by solving the linear systems of LS-SVM. Then we can
predict the regression function of the testing data set with them. When the next data point
comes, we obtain the optimal Lagrange multipliers by solving the linear system of

N o .
LS-SVM based on {{ X, yi} :1 s X pwrts YNws1 ) } Next by eliminating the data point
with smallest absolute value of a; , we have Nw pruned support vectors and their

* Y . . .
corresponding outputs, { x;, y;}i:l , which can be used to predict the regression
function of the testing data set via LS-SVM.

Consider that we have Nw pruned support vectors and corresponding outputs based on

the first # data points of the training data set and that now the new data points

( X ,41,Ya+1) is coming in. Then we obtain the optimal Lagrange multipliers by solving
. * Y Nw
the linear system of LS-SVM based on {{ Xi Vi } o1 CXurl, V) } where

* Nw . . .
{ x;, y,‘-}i=1 is the pruned support vectors and their corresponding outputs selected

from # data points of the training data set. Next by eliminating the data point with

smallest absolute value of @; , we have new Nw pruned support vectors and their

. . Nw . . .
corresponding outputs, { xi*,yi},ﬁl , which can be used to predict the regression
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function of the testing data set via LS-SVM.
4. Numerical Study

We illustrate the performance of the proposed algorithm through the simulated data. For
the nonlinear regression model the response variables y,’s can be expressed as
yi=f(x;)+te;, i=1,-,N,
where ¢&; is assumed to have zero mean and finite variance. For the generation of data, we
set the true value of the regression function to f(x) = sin(x)+0.5 given the covariate
x. For training data set, 1000 of x's are generated from a uniform distribution,
U(—7, +7), and 1000 of &'s are generated from normal distribution, N(0,0.3?%). For

the test data set, 1000 of ( x, €)'s are generated by the same way as for the training data
set. The radial basis kernel function is employed for the nonlinear regression, which is

2
X,— X
K( x,, x/)=exp(—%),

For the optimization problem in (1), the value of regularization parameter C is chosen as

100 and the bandwidth parameter in the radial basis kernel function ¢ is chosen as 1. With
the fixed number of pruned support vectors as 200, we modify pruned support vectors at
each time of new data point coming in.

-05

Figure 1. The scatter plot of 200 pruned support vectors of 400 training data and estimated
regression function for 1000 testing data.

Figure 1 shows the scatter plot of outputs versus support values of 400 training data.

"o,on "

400 data points are denoted by and those by "0” are 200 on line pruned support
values. In the figure 1(right), estimated regression function based on pruned support vectors

and the testing data set of 1000 data points is given. Solid line is the LS-SVM estimator
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of regression function based on 200 on line pruned support values selected from 400
training data points and dashed line is the true regression function. Figure 2 represents the
same results as in Figure 1 but from 1000 training data. From the figures, we can note the
estimated function based on 200 on line pruned support values is quite similar to the true
function.

-0.5

Figure 2. The scatter plot of 200 pruned support vectors of 1000 training data and
estimated regression function for 1000 testing data.

5. Concluding Remarks

In this paper, we suggested an on line pruning regression method by LS-SVM. By using
relatively small number of pruned support vectors, we can have almost same performance
as regression with full data set. Proposed method can be applied to the analysis of on line

system and control where the data come in sequentially or the size of data is huge.
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