• Title/Summary/Keyword: Support Motion

Search Result 587, Processing Time 0.023 seconds

Real-Time Detection of Moving Objects from Shaking Camera Based on the Multiple Background Model and Temporal Median Background Model (다중 배경모델과 순시적 중앙값 배경모델을 이용한 불안정 상태 카메라로부터의 실시간 이동물체 검출)

  • Kim, Tae-Ho;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.269-276
    • /
    • 2010
  • In this paper, we present the detection method of moving objects based on two background models. These background models support to understand multi layered environment belonged in images taken by shaking camera and each model is MBM(Multiple Background Model) and TMBM (Temporal Median Background Model). Because two background models are Pixel-based model, it must have noise by camera movement. Therefore correlation coefficient calculates the similarity between consecutive images and measures camera motion vector which indicates camera movement. For the calculation of correlation coefficient, we choose the selected region and searching area in the current and previous image respectively then we have a displacement vector by the correlation process. Every selected region must have its own displacement vector therefore the global maximum of a histogram of displacement vectors is the camera motion vector between consecutive images. The MBM classifies the intensity distribution of each pixel continuously related by camera motion vector to the multi clusters. However, MBM has weak sensitivity for temporal intensity variation thus we use TMBM to support the weakness of system. In the video-based experiment, we verify the presented algorithm needs around 49(ms) to generate two background models and detect moving objects.

Implementation of Android-Based Applications that can Select Motion Gestures In Up, Down, Left, and Right Directions (안드로이드 기반 상하좌우 방향의 동작 제스처를 선택할 수 있는 응용 프로그램 구현)

  • Yeong-Nam Jeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.945-952
    • /
    • 2023
  • In this paper, GRS chip driven JNI code application SW design based on Android platform was designed and fabricated as motion gesture frame module based on Android platform. The serial data reception module design proposed by the application-based network support API technology was designed with Android-based module design, Android-based module implementation, and Android-based function module implementation design. The data information of the sensor could be checked through Android applications such as classes of serial communication drivers, libraries, and frameworks for receiving data from wireless communication devices through Android OS applications. In addition, applications in Android implement application SW that can judge motion gestures in four directions using Java.

Complex Modal Testing for Rotating Disks with Support Motion (지지부의 운동을 가진 회전원판의 복소모드시험)

  • Ham, Jong-Seok;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1513-1520
    • /
    • 2000
  • Complex modal testing method for rotating disks with support motion is introduced which handles the pairs of two point excitation and responses of the disk as complex input and output, respectively. This method utilizes the directivity information and the separation over the rotational speed of forward and backward traveling wave modes or bending coupled modes in the directional frequency response functions(dFRFs). This method synthesizes the normal/reverse dFRFs and complex wave dFRF, which were originally applied to rotating shaft and rotating disk, respectively, and is applied to complex system with dynamically coupled rotating disks and shaft. Experiments with a commercial hard disk drive spindle system demonstrate the validity of this method.

  • PDF

Parameters for Min. Time and Optimal Control of Four-Legged Mobile Robot (4-족 이동로보트의 최소시간 최적제어를 위한 파라메터 연구)

  • 박성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.490-496
    • /
    • 1995
  • A four-legged mobile robot can move on the plain terrain with mobility and stability, but if there exist any obstacles on the terrain of the motion direction, it takes extra times for a mobile robot to cross those obstacles and the stability should be considered during motion. The main objevtive is the study of a quadruped which can cross obstacles with better mobility, stability and fuel economy than any other wheeled or tracked vehicles. Vertical step, isolated wall and ditch are the basic obstacles and by understanding those three cases perfectly, a quadruped can move on any mixed rough terrain as 4-legged animal moves. Each leg of a determine the crossing capability in a static analysis. A quadruped can be simplified with links and joints. By applying the research method, a quadruped can determine the control procedures as soon as it receives the terrain informations from scanner and finally can be moved as animals move with mobility and stability.

  • PDF

A Study on the Holistic Healing Environment of Children's Library -Focused on the theory of Rudolf Steiner- (어린이 도서관의 전인적 치유환경에 관한 연구 -루돌프 슈타이너의 이론을 중심으로-)

  • Kim, Hye-Yeon;Kim, Kwang-Ho;Jin, Dal-Rae
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.13 no.3
    • /
    • pp.47-55
    • /
    • 2007
  • The theme of this study is holistic healing environment of children's library and it was researched on the basis of anthroposophy theory of Rudolf Steiner. According to Steiner's theory, human being consists of body, spirit, and soul. Especially, children are sensitive ones, and through synthetic function of 12 kinds of senses, they can be holistically healed (healing of body, spirit, and soul). As the sense independently functions or it is a element that cannot be described, it needs spatial plan to support synthetic function of it. We classified the healing space's meaning of children library by motion (including art and music), reading, & landscape healing activities and analyzed spatial characteristic to support each activity.

  • PDF

Numerical study on the walking load based on inverted-pendulum model

  • Cao, Liang;Liu, Jiepeng;Zhang, Xiaolin;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • In this paper, an inverted-pendulum model consisting of a point supported by spring limbs with roller feet is adopted to simulate human walking load. To establish the kinematic motion of first and second single and double support phases, the Lagrangian variation method was used. Given a set of model parameters, desired walking speed and initial states, the Newmark-${\beta}$ method was used to solve the above kinematic motion for studying the effects of roller radius, stiffness, impact angle, walking speed, and step length on the ground reaction force, energy transfer, and height of center of mass transfer. The numerical simulation results show that the inverted-pendulum model for walking is conservative as there is no change in total energy and the duration time of double support phase is 50-70% of total time. Based on the numerical analysis, a dynamic load factor ${\alpha}_{wi}$ is proposed for the traditional walking load model.

Walking Motion Planning for Quadruped Pet Robot (4족 애완로봇을 위한 보행운동 계획)

  • Yi, Soo-Yeong;Choi, Dae-Sung;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.626-633
    • /
    • 2009
  • A motion planning algorithm is presented in this paper for a commercialized quadruped walking of robot pet. Stable walking is the basic requirement for a commercial-purpose legged robot. In order to secure the walking stability, modified body sway to the centroid of support polygon is addressed. By representation of walking motion with respect to the world coordinate system rather than body coordinate, it is possible to design the several gaits in unified fashion. The initial gait posture is introduced to maximize the stride and to achieve fast walking. The proposed walking motion planning is verified through computer simulation and experiments.

Dynamics of a Micro Three-Axis Ring Gyroscope (마이크로 3축 링 자이로스코프의 동역학)

  • Park, Sang-Hyun;Kim, Chang-Boo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.312.1-312
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure rates of turn about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. (omitted)

  • PDF

On the Estimation of the Center of Mass of an Autonomous Bipedal Robot (이족보행 로봇의 무게중심 실시간 추정에 관한 연구)

  • Kwon, Sang-Joo;Oh, Yong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.886-892
    • /
    • 2008
  • In this paper, a closed-loop observer to extract the center of mass (CoM) of a bipedal robot is suggested. Comparing with the simple conversion method of just using joint angle measurements, it enables to get more reliable estimates by fusing both joint angle measurements and F/T sensor outputs at ankle joints. First, a nonlinear-type observer is constructed to estimate the flexible rotational motion of the biped in the extended Kalman filter framework. It adopts the flexible inverted pendulum model which is appropriate to address the flexible motion of bipeds, specifically in the single support phase. The predicted estimates of CoM in terms of the flexible motion observer are combined with measurements (that is, output of the CoM conversion equation with joint angles). Then, we have final CoM estimates depending on the weighting values which penalize the flexible motion model and the CoM conversion equation. Simulation results show the effectiveness of the proposed algorithm.

A Study on the Development of an Electronic Component Assembly Training System Using Leap Motion (Leap Motion을 이용한 전자부품 조립 훈련 시스템 개발에 관한 연구)

  • In-Chul Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.463-470
    • /
    • 2023
  • In this study, an electronic parts assembly training system using Leap Motion was developed in consideration of the processes actually operated in the assembly process of electronic products. Based on Leap Motion and Oculus VR equipment, the system was developed to transfer user's hand movement data in real time and convert it into hand movement in virtual space so that electronic parts assembly simulation can be performed step by step. Through this, it was confirmed that the user can obtain an experience similar to the actual electronic parts assembly work, prevent errors that may occur during the assembly process, and improve proficiency. It is expected that this thesis will provide directions for the quality improvement and development of various education and training programs for virtual reality-based manufacturing processes.