• Title/Summary/Keyword: Support Decision Making

Search Result 1,439, Processing Time 0.029 seconds

Web-based Disaster Operating Picture to Support Decision-making (의사결정 지원을 위한 웹 기반 재난정보 표출 방안)

  • Kwon, Youngmok;Choi, Yoonjo;Jung, Hyuk;Song, Juil;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.725-735
    • /
    • 2022
  • Currently, disasters occurring in Korea are characterized by unpredictability and complexity. Due to these features, property damage and human casualties are increasing. Since the initial response process of these disasters is directly related to the scale and the spread of damage, optimal decision-making is essential, and information of the site must be obtained through timely applicable sensors. However, it is difficult to make appropriate decisions because indiscriminate information is collected rather than necessary information in the currently operated Disaster and Safety Situation Office. In order to improve the current situation, this study proposed a framework that quickly collects various disaster image information, extracts information required to support decision-making, and utilizes it. To this end, a web-based display system and a smartphone application were proposed. Data were collected close to real time, and various analysis results were shared. Moreover, the capability of supporting decision-making was reviewed based on images of actual disaster sites acquired through CCTV, smartphones, and UAVs. In addition to the reviewed capability, it is expected that effective disaster management can be contributed if institutional mitigation of the acquisition and sharing of disaster-related data can be achieved together.

Machine Learning Based Asset Risk Management for Highway Sign Support Systems

  • Myungjin CHAE;Jiyong CHOI
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.145-151
    • /
    • 2024
  • Road sign support systems are not usually well managed because bridges and pavement have budget and maintenance priority while the sign boards and sign supports are considered as miscellaneous items. The authors of this paper suggested the implementation of simplified machine learning algorithms for asset risk management in highway sign support systems. By harnessing historical and real-time data, machine learning models can forecast potential vulnerabilities, enabling early intervention and proactive maintenance protocols. The raw data were collected from the Connecticut Department of Transportation (CTDOT) asset management database that includes asset ages, repair history, installation and repair costs, and other administrative information. While there are many advanced and complicated structural deterioration prediction models, a simple deterioration curve is assumed, and prediction model has been developed using machine learning algorithm to determine the risk assessment and prediction. The integration of simplified machine learning in asset risk management for highway sign support systems not only enables predictive maintenance but also optimizes resource allocation. This approach ensures that decision-makers are not inundated with excessive detailed information, making it particularly practical for industry application.

DYNAMICS OF PAKISTAN'S POST 9/11 CRISIS FOREIGN POLICY DECISION-MAKING PROCESS

  • Hussain, Mehmood
    • Korea and Global Affairs
    • /
    • v.2 no.2
    • /
    • pp.157-184
    • /
    • 2018
  • The study has applied the four stage "Model of State Behavior in Crisis" to trace the post 9/11 crisis foreign policy decision making process in Pakistan. It argues that ominous attacks on the United States by al-Qaeda and subsequent declaration of President Bush to fight against terrorism transformed the global and regional politico-security dimensions at t1 stage. Being a neighboring country, Pakistan's support was inevitable in the war on terror and Washington applied coercive diplomacy to win the cooperation from Islamabad. Consequently, in case of decline to accept American demands, Pakistan perceived threat to basic values/objectives of the country and simultaneous time pressure amplified the psychological stress in decision makers at t2 stage. Therefore, the decisional forum was setup at t3 stage and Pakistan decided to join the United States at t4 stage, which defused the foreign policy crisis.

Design of the Security Evaluation System for Decision Support in the Enterprise Network Security Management (대규모 네트워크 환경에서의 보안관리를 위한 보안평가 시스템 설계)

  • 이재승;김상춘
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.6
    • /
    • pp.776-786
    • /
    • 2003
  • Security Evaluation System is a system that evaluates the security of the entire enterprise network domain which consists of various components and that supports a security manager or a Security Management System in making decisions about security management of the enterprise network based on the evaluation. It helps the security manager or the security management system to make a decision about how to change the configuration of the network to prevent the attack due to the security vulnerabilities of the network. Security Evaluation System checks the “current status” of the network, predicts the possible intrusion and supports decision-making about security management to prevent the intrusion in advance. In this paper we analyze the requirements of the Security Evaluation System that automates the security evaluation of the enterprise network which consists of various components and that supports decision-making about security management to prevent the intrusion, and we propose a design for it which satisfies the requirements.

Resupply Behavior Modeling in Small-unit Combat Simulation using Decision Trees (소부대 전투 모의를 위한 의사결정트리 기반 재보급 행위 모델링)

  • Seil An;Sang Woo Han
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.9-21
    • /
    • 2023
  • The recent conflict between Russia and Ukraine underscores the significant of military logistics support in modern warfare. Military logistics support is intricate and specialized, and traditionally centered on the mission-level operational analysis and functional models. Nevertheless, there is currently increasing demand for military logistics support even at the engagement level, especially for resupply using unmanned transport assets. In response to the demand, this study proposes a task model of the military logistics support for engagement-level analysis that relies on the logic of ammunition resupply below the battalion level. The model employs a decisions tree to establish the priority of resupply based on variables such as the enemy's level of threat and the remaining ammunition of the supported unit. The model's feasibility is demonstrated through a combat simulation using OneSAF.

Implementing Data warehouse Methodology Architecture: From Metadata Perspective

  • Kim, Sang-Youl;Kim, Tae-Hun
    • International Commerce and Information Review
    • /
    • v.7 no.1
    • /
    • pp.55-74
    • /
    • 2005
  • Recently, many enterprises have attempted to construct data warehousing systems for decision-support. Data warehouse is an intelligent store of data that can aggregate vast amounts of information. Building DW requires two important development issues:(i) DW for the decision making of business users and (ii) metadata within it. Most DW development methodologies have not considered metadata development; it is necessary to adopt a DW development methodology which develops a DW and its metadata simultaneously. Metadata is a key to success of data warehousing system and is critical for implementing DW. That is, metadata is crucial documentation for a data warehousing system where users should be empowered to meet their own information needs; users need to know what data exists, what it represents, where it is located, and how to access it. Furthermore, metadata is used for extracting data and managing DW. However, metadata has failed because its management has been segregated from the DW development process. Metadata must be integrated with data warehousing systems. Without metadata, the decision support of DW is under the control of technical users. Therefore, integrating data warehouse with its metadata offers a new opportunity to create a more adaptive information system. Therefore, this paper proposes a DW development methodology from a metadata perspective. The proposed methodology consists of five phases: preparatory, requirement analysis, data warehouse (informational database) development, metastore development, and maintenance. To demonstrate the practical usefulness of the methodology, one case is illustrated

  • PDF

Research about the IoT based on Korean style Smart Factory Decision Support System Platform - based on Daegu/Kyeongsangbuk-do region component manufacture companies (IoT 기반의 한국형 Smart Factory 의사결정시스템 플랫폼에 대한 연구 - 대구/경북 부품소재 기업을 중심으로)

  • Sagong, Woon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The current economic crisis is making new demands on manufacturing industry, in particular, in terms of the flexibility and efficiency of production processes. This requires production and administrative processes to be meshed with each other by means of IT systems to optimise the use and capacity utilisation of machines and lines but also to be able to respond rapidly to wrong developments in production and thus to minimise adverse impacts on the business. The future scenario of the "smart factory" represents the zenith of this development. The factory can be modified and expanded at will, combines all components from different manufacturers and enables them to take on context-related tasks autonomously. Integrated user interfaces will still be required at most for basic functionalities. The complex control operations will run wirelessly and ad hoc via mobile terminals such as PDAs or smartphones. The comnination of IoT, and Big Data optimisation is bringing about huge opportunities. these processes are not just limited to manufacturing, anywhere a supply chain environment exists can benefit from information provided by linked devices and access to big data to inform their decision support. Building a smart factory with smart assets at its core means reaching those desired new levels of productivity and efficiency. It means smart products that leverage advanced traceability, connectivity and intelligence. For businesses, it means being able to address the talent crunch through more autonomous. In a Smart Factory, machinery and equipment will have the ability to improve processes through self-optimization and autonomous decision-making.

A Need-awaring Multi-agent Approach to Nomadic Community Computing for Ad Hoc Need Identification and Group Formation (유목커뮤니티 컴퓨팅에서 임의적 욕구파악과 그룹형성을 위한 욕구인지 다중에이전트 접근법)

  • Choi Keun-Ho;Kwon Oh-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.2
    • /
    • pp.17-32
    • /
    • 2006
  • Recently, community computing has been proposed for group formation and group decision-making. However, legacy community computing systems do not support group need identification for ad hoc group formation, which would be one of key features of ubiquitous decision support systems and services. Hence, this paper aims to provide a multi-agent based methodology to enable nomadic community computing which supports ad hoc need identification and group formation. Focusing on supporting group decision-making of relatively small sized multiple individual in a community, the methodology copes with the following three characteristics: (1) ad hoc group formation, (2) context-aware group need identification and (3) using mobile devices working in- and out-doors. NAMA-US, an RFID-based prototype system has been developed to show the feasibility of the idea proposed in this paper.

  • PDF

A Study on the Analysis and Estimation of the Construction Cost by Using Deep learning in the SMART Educational Facilities - Focused on Planning and Design Stage - (딥러닝을 이용한 스마트 교육시설 공사비 분석 및 예측 - 기획·설계단계를 중심으로 -)

  • Jung, Seung-Hyun;Gwon, Oh-Bin;Son, Jae-Ho
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2018
  • The purpose of this study is to predict more accurate construction costs and to support efficient decision making in the planning and design stages of smart education facilities. The higher the error in the projected cost, the more risk a project manager takes. If the manager can predict a more accurate construction cost in the early stages of a project, he/she can secure a decision period and support a more rational decision. During the planning and design stages, there is a limited amount of variables that can be selected for the estimating model. Moreover, since the number of completed smart schools is limited, there is little data. In this study, various artificial intelligence models were used to accurately predict the construction cost in the planning and design phase with limited variables and lack of performance data. A theoretical study on an artificial neural network and deep learning was carried out. As the artificial neural network has frequent problems of overfitting, it is found that there is a problem in practical application. In order to overcome the problem, this study suggests that the improved models of Deep Neural Network and Deep Belief Network are more effective in making accurate predictions. Deep Neural Network (DNN) and Deep Belief Network (DBN) models were constructed for the prediction of construction cost. Average Error Rate and Root Mean Square Error (RMSE) were calculated to compare the error and accuracy of those models. This study proposes a cost prediction model that can be used practically in the planning and design stages.

A Study on the Use of Scientific Investigation Equipment to Support Decision-making of the Resident Evacuation in the Event of a Chemical Accident (화학사고 발생에 따른 주민대피 의사결정 지원을 위한 과학조사장비 활용방안 연구)

  • Oh, Joo-Yeon;Lee, Tae Wook;Cho, Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1817-1826
    • /
    • 2022
  • After the hydrogen fluoride leak in Gumi in 2012, the government has been systemizing the disaster management system, such as responding to and managing chemical accidents. In particular, the Ministry of the Interior and Safety (MOIS) is in charge of evacuation of residents following chemical accidents based on the Framework Act on Management of Disaster and Safety. In this study, an application plan was presented to support and utilize the decision-making support for evacuation of residents after a chemical accident using the chemical accident investigation equipment of the National Disaster Management Research Institute (NDMI). In the equipment operation system for scientific information collection due to chemical accidents, the roles and purpose of use of long/short distance measurement equipment were presented according to regular and emergency situations. Using the data acquired through long/short distance measurement equipment, it can be used as basic data for resident evacuation decision-making by monitoring whether chemicals are detected in an emergency and managing data on detected substances by company in a regular situation. As a result of measuring chemical substances in order to verify on-site usability by equipment only for the regular operation system, it was confirmed that real-time detection of chemical substances is possible with long distance measuring equipment. In addition, it was confirmed that it was necessary to check the measurable distance and range of the equipment in the future. In the case of short distance measurement equipment, hydrocarbon-based substances were mainly detected, and it was confirmed that it was measured at a higher level in Ulsan-Mipo National Industrial Complex than in Onsan National Industrial Complex. It is expected that it can be used as basic data to support decision-making in the event of chemical accidents through continuous data construction in the future.