• 제목/요약/키워드: Support Boundary

검색결과 454건 처리시간 0.024초

Structural monitoring of layered FGM distribution ring support: Analysis with and without internal pressure

  • Ghamkhar, Madiha;Harbaoui, Imene;Hussain, Muzamal;Ayed, Hamdi;Khadimallah, Mohamed A.;Alshoaibi, Adil
    • Advances in nano research
    • /
    • 제12권3호
    • /
    • pp.337-344
    • /
    • 2022
  • In this work, the vibrational frequency of two layered FGM cylindrical shell with and without the effects of internal pressure under ring support are discussed in detailed. The functionally graded materials of a cylindrical shell are designed for specific purpose and studied under various boundary conditions. The Love shell dynamical equations theory is utilized to find the relationship between the curvature displacement and strain displacement. Natural frequency vibrations are analyzed by using volume polynomial for bi-layered FGM shell under ring support both for with and without internal pressures.

Multi-User Detection using Support Vector Machines

  • 이정식;이재완;황재정;정경택
    • 한국통신학회논문지
    • /
    • 제34권12C호
    • /
    • pp.1177-1183
    • /
    • 2009
  • In this paper, support vector machines (SVM) are applied to multi-user detector (MUD) for direct sequence (DS)-CDMA system. This work shows an analytical performance of SVM based multi-user detector with some of kernel functions, such as linear, sigmoid, and Gaussian. The basic idea in SVM based training is to select the proper number of support vectors by maximizing the margin between two different classes. In simulation studies, the performance of SVM based MUD with different kernel functions is compared in terms of the number of selected support vectors, their corresponding decision boundary, and finally the bit error rate. It was found that controlling parameter, in SVM training have an effect, in some degree, to SVM based MUD with both sigmoid and Gaussian kernel. It is shown that SVM based MUD with Gaussian kernels outperforms those with other kernels.

시나리오 기반 홍수위험정보지원시스템 구축 방안 연구 (Study on Construction of Flood Hazard Information Support System based on Scenario)

  • 구신회;진경혁;정태성
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.389-393
    • /
    • 2010
  • The Objective of this study was to develop a system for visualizing inundation area by using 1-D numerical model analyzing damage information such as inundation area, facilities, land usages, population, building, loads. In this study, we have reviewed hydraulic models to select a flood model for simulation of discharges, water depths and velocities. The study area is Namhan River from Youngwol to Paldang Dam which had a flood damage on upper and below regions of Chungju Dam by a storm event in 2006. At the first, we developed the DB system base on GIS thematic map, ortho images, cadastral maps to analyze flood damages and support decisions making. Changing the boundary conditions such as discharge at the gauging stations, flood simulations were performed and then damages were extracted from the databases information support system based on 1-D numerical hydraulic model, it is expected to be able to analyze flood damages and support a decision making for reduce flood relate damages. In the future, the system developed in this study could be applied for flood forecasting system of small scaled streams.

  • PDF

MCSVM을 이용한 반도체 공정데이터의 과소 추출 기법 (Under Sampling for Imbalanced Data using Minor Class based SVM (MCSVM) in Semiconductor Process)

  • 박새롬;김준석;박정술;박승환;백준걸
    • 대한산업공학회지
    • /
    • 제40권4호
    • /
    • pp.404-414
    • /
    • 2014
  • Yield prediction is important to manage semiconductor quality. Many researches with machine learning algorithms such as SVM (support vector machine) are conducted to predict yield precisely. However, yield prediction using SVM is hard because extremely imbalanced and big data are generated by final test procedure in semiconductor manufacturing process. Using SVM algorithm with imbalanced data sometimes cause unnecessary support vectors from major class because of unselected support vectors from minor class. So, decision boundary at target class can be overwhelmed by effect of observations in major class. For this reason, we propose a under-sampling method with minor class based SVM (MCSVM) which overcomes the limitations of ordinary SVM algorithm. MCSVM constructs the model that fixes some of data from minor class as support vectors, and they can be good samples representing the nature of target class. Several experimental studies with using the data sets from UCI and real manufacturing process represent that our proposed method performs better than existing sampling methods.

Vibrations of rotationally restrained Timoshenko beam at hinged supports during an earthquake

  • Kim, Yong-Woo;Ryu, Jeong Yeon
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.1066-1078
    • /
    • 2020
  • The present paper describes an analytic solution procedure for flexural vibration of a rotationally restrained hinged-hinged Timoshenko beam at the supports during an earthquake. Focusing on maximal magnitudes of internal loads such as bending moment and shearing force under wide variations of two parameters, kL/EI and kGAL2/EI, various beams under synchronous and asynchronous support motions are simulated. The simulations under asynchronous support motions show the following facts. The variations of the maximal magnitudes of internal loads of stocky beams due to the variation of kL/EI from zero to infinity show much wider variations than those of slender beams as kGAL2/EI decreases. The maximal magnitudes of internal loads of a beam tend to be governed by their static components as kL/EI increases and kGAL2/EI decreases. When the internal loads are governed by their static components, maximal magnitudes of internal loads of the stocky tend to increase monotonically as the value of kL/EI increases. However, the simulations under synchronous support motions show the static components of the internal loads vanish and the internal loads are governed by dynamic components irrespective of the two parameters.

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.

Research on the deformation characteristics and support methods of the cross-mining roadway floor influence by right-angle trapezoidal stope

  • Zhaoyi Zhang;Wei Zhang
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.293-306
    • /
    • 2024
  • Influenced by the alternating effects of dynamic and static pressure during the mining process of close range coal seams, the surrounding rock support of cross mining roadway is difficult and the deformation mechanism is complex, which has become an important problem affecting the safe and efficient production of coal mines. The paper takes the inclined longwall mining of the 10304 working face of Zhongheng coal mine as the engineering background, analyzes the key strata fracture mechanism of the large inclined right-angle trapezoidal mining field, explores the stress distribution characteristics and transmission law of the surrounding rock of the roadway affected by the mining of the inclined coal seam, and proposes a segmented and hierarchical support method for the cross mining roadway affected by the mining of the close range coal seam group. The research results indicate that based on the derived expressions for shear and tensile fracture of key strata, the ultimate pushing distance and ultimate suspended area of a right angle trapezoidal mining area can be calculated and obtained. Within the cross mining section, along the horizontal direction of the coal wall of the working face, the peak shear stress is located near the middle of the boundary. The cracks on the floor of the cross mining roadway gradually develop in an elliptical funnel shape from the shallow to the deep. The dual coupling support system composed of active anchor rod support and passive U-shaped steel shed support proposed in this article achieves effective control of the stability of cross mining roadways, which achieves effective control of floor by coupling active support and preventive passive support to improve the strength of the surrounding rock itself. The research results are of great significance for guiding the layout, support control, and safe mining of cross mining roadways, and to some extent, can further enrich and improve the relevant theories of roof movement and control.

도심경계설정을 위한 공간통계학적 접근 (A Spatial Statistical Approach to the Delimitation of CBD)

  • 김호용;김지숙;이성호
    • 한국지리정보학회지
    • /
    • 제15권4호
    • /
    • pp.42-54
    • /
    • 2012
  • 본 연구에서는 원도심의 노후화로 인해 도심 활력이 저하되고 있는 부산시 도심부를 대상으로 도심의 경계를 확인하기 위하여 공간통계학적 접근이 시도되었다. 이 과정에서 도심경계설정에 적합한 Getis-Ord $G_i^*$ 방법론과 Inverse Distance Weight(IDW)와 Fixed Distance Band(FDB) 두 가지 공간적 연관성 방법을 적용하여 도심경계를 설정하였다. 공간통계학적 방법을 이용해 도출된 도심경계 결과는 유용성과 신뢰성 확인을 위하여 선행연구의 방법과 비교 검증하였다. 검증결과 IDW 방법론의 결과는 상업 업무용 토지이용비율이 40% 이상인 선행연구의 결과와는 일치하였고, FDB 방법론의 결과는 주상혼합지역 혹은 주공혼합지역의 성격을 가지는 점이지대의 특성을 반영할 수 있었다. 특히, 본 연구에서 적용한 특성화 지수를 이용한 결과 FDB 방법론을 적용한 도심경계에서 주 상복합용 토지이용이 매우 특화되는 것으로 나타났다. 본 연구에서 제시한 방법은 향후 도시공간구조의 이해와 효율적인 도시의 관리에 도움을 줄 것으로 판단된다.

Experimental study of extracting artificial boundary condition frequencies for dynamic model updating

  • Hou, Chuanchuan;Mao, Lei;Lu, Yong
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.247-261
    • /
    • 2017
  • In the field of dynamic measurement and structural damage identification, it is generally known that modal frequencies may be measured with higher accuracy than mode shapes. However, the number of natural frequencies within a measurable range is limited. Accessing additional forms of modal frequencies is thus desirable. The present study is concerned about the extraction of artificial boundary condition (ABC) frequencies from modal testing. The ABC frequencies correspond to the natural frequencies of the structure with a perturbed boundary condition, but they can be extracted from processing the frequency response functions (FRF) measured in a specific configuration from the structure in its existing state without the need of actually altering the physical support condition. This paper presents a comprehensive experimental investigation into the measurability of the ABC frequencies from physical experiments. It covers the testing procedure through modal testing, the data processing and data analysis requirements, and the FRF matrix operations leading to the extraction of the ABC frequencies. Specific sources of measurement errors and their effects on the accuracy of the extracted ABC frequencies are scrutinised. The extracted ABC frequencies are subsequently applied in the damage identification in beams by means of finite element model updating. Results demonstrate that it is possible to extract the first few ABC frequencies from the modal testing for a variety of artificial boundary conditions incorporating one or two virtual pin supports, and the inclusion of ABC frequencies enables the identification of structural damages without the need to involve the mode shape information.

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.